Откуда есть пошёл человек
Человека создал Бог
9
Человек произошёл по теории Ч.Дарвина
15
Человека создали инопланетяне
10
Всего голосов: 34
Валя2
Акула пера
11/23/2018, 10:36:06 AM
(Безумный Иван @ 22-11-2018 - 21:52)
Прочитав Ваше доказательство я увидел что Вы ссылаетесь на тот факт, который считаете бесспорным. То что сумма углов треугольника равна 180 градусов. А ведь это теорема о сумме углов треугольника и она доказывается. Нет, я ссылаюсь на то, что треугольник СУЩЕСТВУЕТ, и все )) А Существование треугольника определено понятием Пересечение )) А это понятие вы САМИ тут использовали значит по нему не может быть спора ))
Вы совершенно верно пытались увильнуть от поражения, когда захотели чтобы я доказывал что такое "пересечение" )) Но я отказался ибо у меня Пересечение это тоже самое что и у вас )) А если вы вдруг "не знаете" что такое Пересечение и как получается Треугольник, то вы умышленно солгали когда предлагали спор.
ЧТД.
Треугольник состоит из трех пересекающихся прямых, чем и отличается от прямоугольника в котором две параллельные прямые нуждаются в двух дополнительных отрезках (ибо параллельные не пересекаются никогда).
Сумма именно в 179,999 (9) градусов названа как ПРИМЕР появления НОВОЙ Фигуры Внутри Прямоугольника. Точная цифра не важна- речь была о понятии "математической бесконечности" путем записи "9 в периоде". Просто пример вашего поведения.
Рассмотрев внимательно теорему о сумме углов треугольника замечаем что доказательство ее ссылается на другой факт который следует принять доказанным. Это теорема о том что накрест лежащие углы равны.
Нет я не доказываю именно "равенство" всех углов для "будущей сходимости третьей и первой прямой", я просто говорю что существует РАЗМЕР угла (любой, не обязательно "равный" или там еще какой-то, главное что НЕ нулевой!), существует Факт Пересечения- а иначе третья прямая будет тождественна второй.
Без наличия угла внутри прямоугольника (а наличие угла как раз означает что существует именно треугольник) третья прямая будет "проходить" через все точки второй, т.е. будет ей равна.
Тут я использую понятие "точка пересечения", означающая что имеется две разных прямых которые пересекаются в одной точке, и образуют ДВА (размер не важен, речь только про количество) накрест лежащих угла.
ЗЫ- а доказательством того что накрест лежащие углы равны, является сам факт того что в пересечении и в создании "накрест лежащих углов" участвуют именно ПРЯМЫЕ а не кривые линии, и значит треугольники с двух сторон будут одинаковые ))
Просто ссылаться на очевидность можно любым способом- вы нашли доказательство через аксиому, я только что несколькими словами доказал напрямую через определение Прямой, Угла и Треугольника.
Поэтому вам не надо "УВИДЕТЬ" че-то тама в моем доказательстве, вам надо доказать что НИКАКАЯ фигура (в том числе прямоугольник) не поможет рассмотрению картинки с тремя прямыми, и никаким образом ВНУТРИ начального прямоугольника из первой и второй параллельных прямых- не возникает треугольник со стороной в виде третьей прямой.
Математически вам надо доказать что существует некий "небольшой угол пересечения" который не будет иметь размера, не позволит зафиксировать наличие Угла.
Докажете?
Я доказал что Ваше доказательство это фуфло. ЧТД
вы не показали в каком месте у меня ошибка- вы просто приписали мне фуфло которое сами и опровергли.
Еще раз- я не ссылаюсь на Точную Цифровую сумму углов треугольника и упоминание про 180 градусов ниоткуда не исходит и ни к чему не приводит.
Там просто выводы про ваше изобретение Новой Фигуры ))
Хотя уверен что цифру 180 можно доказать и без "спорной" аксиомы- но это потом поспорим, когда вы подпись поменяете.
ВОСЕМЬ раз вы даже не показываете какое логическое звено у меня неправильное! Вам самому не тошно от того как психоблок поработил вашу личность?
Прочитав Ваше доказательство я увидел что Вы ссылаетесь на тот факт, который считаете бесспорным. То что сумма углов треугольника равна 180 градусов. А ведь это теорема о сумме углов треугольника и она доказывается. Нет, я ссылаюсь на то, что треугольник СУЩЕСТВУЕТ, и все )) А Существование треугольника определено понятием Пересечение )) А это понятие вы САМИ тут использовали значит по нему не может быть спора ))
Вы совершенно верно пытались увильнуть от поражения, когда захотели чтобы я доказывал что такое "пересечение" )) Но я отказался ибо у меня Пересечение это тоже самое что и у вас )) А если вы вдруг "не знаете" что такое Пересечение и как получается Треугольник, то вы умышленно солгали когда предлагали спор.
ЧТД.
Треугольник состоит из трех пересекающихся прямых, чем и отличается от прямоугольника в котором две параллельные прямые нуждаются в двух дополнительных отрезках (ибо параллельные не пересекаются никогда).
Сумма именно в 179,999 (9) градусов названа как ПРИМЕР появления НОВОЙ Фигуры Внутри Прямоугольника. Точная цифра не важна- речь была о понятии "математической бесконечности" путем записи "9 в периоде". Просто пример вашего поведения.
Рассмотрев внимательно теорему о сумме углов треугольника замечаем что доказательство ее ссылается на другой факт который следует принять доказанным. Это теорема о том что накрест лежащие углы равны.
Нет я не доказываю именно "равенство" всех углов для "будущей сходимости третьей и первой прямой", я просто говорю что существует РАЗМЕР угла (любой, не обязательно "равный" или там еще какой-то, главное что НЕ нулевой!), существует Факт Пересечения- а иначе третья прямая будет тождественна второй.
Без наличия угла внутри прямоугольника (а наличие угла как раз означает что существует именно треугольник) третья прямая будет "проходить" через все точки второй, т.е. будет ей равна.
Тут я использую понятие "точка пересечения", означающая что имеется две разных прямых которые пересекаются в одной точке, и образуют ДВА (размер не важен, речь только про количество) накрест лежащих угла.
ЗЫ- а доказательством того что накрест лежащие углы равны, является сам факт того что в пересечении и в создании "накрест лежащих углов" участвуют именно ПРЯМЫЕ а не кривые линии, и значит треугольники с двух сторон будут одинаковые ))
Просто ссылаться на очевидность можно любым способом- вы нашли доказательство через аксиому, я только что несколькими словами доказал напрямую через определение Прямой, Угла и Треугольника.
Поэтому вам не надо "УВИДЕТЬ" че-то тама в моем доказательстве, вам надо доказать что НИКАКАЯ фигура (в том числе прямоугольник) не поможет рассмотрению картинки с тремя прямыми, и никаким образом ВНУТРИ начального прямоугольника из первой и второй параллельных прямых- не возникает треугольник со стороной в виде третьей прямой.
Математически вам надо доказать что существует некий "небольшой угол пересечения" который не будет иметь размера, не позволит зафиксировать наличие Угла.
Докажете?
Я доказал что Ваше доказательство это фуфло. ЧТД
вы не показали в каком месте у меня ошибка- вы просто приписали мне фуфло которое сами и опровергли.
Еще раз- я не ссылаюсь на Точную Цифровую сумму углов треугольника и упоминание про 180 градусов ниоткуда не исходит и ни к чему не приводит.
Там просто выводы про ваше изобретение Новой Фигуры ))
Хотя уверен что цифру 180 можно доказать и без "спорной" аксиомы- но это потом поспорим, когда вы подпись поменяете.
ВОСЕМЬ раз вы даже не показываете какое логическое звено у меня неправильное! Вам самому не тошно от того как психоблок поработил вашу личность?
Валя2
Акула пера
11/23/2018, 10:53:13 AM
(Безумный Иван @ 22-11-2018 - 18:56)
(Victor665 @ 22-11-2018 - 10:55)
Тогда получается вы не будете оспаривать любой текст, который назван "доказательством"?
ЗЫ- вы можете отрицать че хотите, это никому не интересно. ОШИБКУ в доказательстве вы же не показываете.
...
Вот вам самый краткий вариант чтобы уже вилять было невозможно-
Если через точку провести третью прямую то она образует треугольник со второй прямой.
А первая параллельная прямая НЕ образует треугольника со второй прямой.
Первая и вторая прямые могут только четырехугольник образовать.
Значит третья (и последующие) прямые создают новый угол внутри угла четырехугольника (в котором сторонами являются первая и вторая параллельные прямые), т.е. третья прямая НЕ создает такой же новый четырехугольник со второй прямой, и не может создать новый параллелограмм внутри угла основного параллелограмма.
Значит третья прямая может создать только треугольник с первой прямой т.е. пересекает первую т.е. не является параллельной к первой.
ЗЫ- для опровержения вам надо доказать, что внутренняя линия из угла параллелограмма (секущая к верхней стороне) создает новый параллелограмм с нижней стороной. Буду. Если он будет сформулирован четко и ясно. Вы лживо и позорно убрали из цитаты самый простой вариант доказательства, где нет насмешек про 179,999 (9) градусов.
А обещали что будете )) МНОГОКРАТНАЯ однообразная ЛОЖЬ.
ЗЫ- выделил курсивом саму суть доказательства, там несколько фраз, короче чем для школьников.
Ключевое слово "ВНУТРИ" угла, чисто геометрическое доказательство того, как в прямоугольнике образуются треугольники.
Поглядим че будет дальше ))
(Victor665 @ 22-11-2018 - 10:55)
Тогда получается вы не будете оспаривать любой текст, который назван "доказательством"?
ЗЫ- вы можете отрицать че хотите, это никому не интересно. ОШИБКУ в доказательстве вы же не показываете.
...
Вот вам самый краткий вариант чтобы уже вилять было невозможно-
Если через точку провести третью прямую то она образует треугольник со второй прямой.
А первая параллельная прямая НЕ образует треугольника со второй прямой.
Первая и вторая прямые могут только четырехугольник образовать.
Значит третья (и последующие) прямые создают новый угол внутри угла четырехугольника (в котором сторонами являются первая и вторая параллельные прямые), т.е. третья прямая НЕ создает такой же новый четырехугольник со второй прямой, и не может создать новый параллелограмм внутри угла основного параллелограмма.
Значит третья прямая может создать только треугольник с первой прямой т.е. пересекает первую т.е. не является параллельной к первой.
ЗЫ- для опровержения вам надо доказать, что внутренняя линия из угла параллелограмма (секущая к верхней стороне) создает новый параллелограмм с нижней стороной. Буду. Если он будет сформулирован четко и ясно. Вы лживо и позорно убрали из цитаты самый простой вариант доказательства, где нет насмешек про 179,999 (9) градусов.
А обещали что будете )) МНОГОКРАТНАЯ однообразная ЛОЖЬ.
ЗЫ- выделил курсивом саму суть доказательства, там несколько фраз, короче чем для школьников.
Ключевое слово "ВНУТРИ" угла, чисто геометрическое доказательство того, как в прямоугольнике образуются треугольники.
Поглядим че будет дальше ))
Безумный Иван
Акула пера
11/23/2018, 1:57:20 PM
(Victor665 @ 23-11-2018 - 08:53)
(Безумный Иван @ 22-11-2018 - 18:56)
(Victor665 @ 22-11-2018 - 10:55)
Итак. Для ясности нарисую картинку
Первая прямая (AB) и вторая прямая (CD) с двумя "шпалами" создают четырехугольник ABDC
Первая прямая (AB) и третья прямая (CX) создают четырехугольник ABXC
В чем проблема-то?
(Безумный Иван @ 22-11-2018 - 18:56)
(Victor665 @ 22-11-2018 - 10:55)
скрытый текстТогда получается вы не будете оспаривать любой текст, который назван "доказательством"?
ЗЫ- вы можете отрицать че хотите, это никому не интересно. ОШИБКУ в доказательстве вы же не показываете.
...
Вот вам самый краткий вариант чтобы уже вилять было невозможно-
Если через точку провести третью прямую то она образует треугольник со второй прямой.
А первая параллельная прямая НЕ образует треугольника со второй прямой.
Первая и вторая прямые могут только четырехугольник образовать.
Значит третья (и последующие) прямые создают новый угол внутри угла четырехугольника (в котором сторонами являются первая и вторая параллельные прямые), т.е. третья прямая НЕ создает такой же новый четырехугольник со второй прямой, и не может создать новый параллелограмм внутри угла основного параллелограмма.
Значит третья прямая может создать только треугольник с первой прямой т.е. пересекает первую т.е. не является параллельной к первой.
ЗЫ- для опровержения вам надо доказать, что внутренняя линия из угла параллелограмма (секущая к верхней стороне) создает новый параллелограмм с нижней стороной.
Буду. Если он будет сформулирован четко и ясно.
Вы лживо и позорно убрали из цитаты самый простой вариант доказательства, где нет насмешек про 179,999 (9) градусов.
А обещали что будете )) МНОГОКРАТНАЯ однообразная ЛОЖЬ.
ЗЫ- выделил курсивом саму суть доказательства, там несколько фраз, короче чем для школьников.
Ключевое слово "ВНУТРИ" угла, чисто геометрическое доказательство того, как в прямоугольнике образуются треугольники.
Поглядим че будет дальше ))
Итак. Для ясности нарисую картинку
Первая прямая (AB) и вторая прямая (CD) с двумя "шпалами" создают четырехугольник ABDC
Первая прямая (AB) и третья прямая (CX) создают четырехугольник ABXC
В чем проблема-то?
Валя2
Акула пера
11/23/2018, 2:59:22 PM
(Безумный Иван @ 23-11-2018 - 11:57)
1. Не четырехугольник а ПРЯМОугольник, хватит заниматься подлогами.
2. Не надо меня спрашивать, надо показывать ошибку возможно возникающую у меня при использовании понятия Внутренний угол прямоугольника.
ЗЫ- только щас сообразил, а зачем вы там выше, говорили про какие-то накрест лежащие углы у секущей которая проходит через первую и вторую прямые?! Ведь факт пересечения третьей и первой конечно еще недоказан и я конечно на него НИГДЕ не ссылался.
Речь идет только о том, что возникает угол с "двух" сторон точки пересечения. И значит возникает треугольник.
3. А проблема у вас в том, что вы закончили картинку в том месте где вам было удобно, а она бесконечная. Зачем вы обрезали треугольник? ))
Или попросите меня доказать что существует разница между прямоугольником и треугольником, или еще что-то придумаете?
И почему вы не пишите размер Первого угла АСХ который будет заведомо меньше 90 градусов т.е. прямоугольник становится невозможен?
Именно в этом смысл- что ДВА прямых угла у треугольника не бывает. А сами треугольники существуют, ну как фигура.
Или мне надо доказывать что существуют и прямоугольники и треугольники?
Попробую совсем по простому пояснить- я не размерами углов доказываю, а количеством углов в фигурах, образуемых прямыми линиями.
При этом для устранения увиливаний все углы начальной фигуры будем считать прямыми, так с вами надежнее общаться, а то еще че-нить мне припишите и опять начнете вопросы задавать вместо того чтобы отвечать- за свои слова.
Еще подумал- может вы существование прямого угла отрицать будете? Даже придумать уже не могу, на что именно вы намекаете своим вопросом "в чем проблема?"
Напишите как-нить понятно, можно очень длинно, я пойму любой длинный текст который носит полный определенный однозначный характер
Первая прямая (AB) и вторая прямая (CD) с двумя "шпалами" создают четырехугольник ABDC
Первая прямая (AB) и третья прямая (CX) создают четырехугольник ABXC
В чем проблема-то?
1. Не четырехугольник а ПРЯМОугольник, хватит заниматься подлогами.
2. Не надо меня спрашивать, надо показывать ошибку возможно возникающую у меня при использовании понятия Внутренний угол прямоугольника.
ЗЫ- только щас сообразил, а зачем вы там выше, говорили про какие-то накрест лежащие углы у секущей которая проходит через первую и вторую прямые?! Ведь факт пересечения третьей и первой конечно еще недоказан и я конечно на него НИГДЕ не ссылался.
Речь идет только о том, что возникает угол с "двух" сторон точки пересечения. И значит возникает треугольник.
3. А проблема у вас в том, что вы закончили картинку в том месте где вам было удобно, а она бесконечная. Зачем вы обрезали треугольник? ))
Или попросите меня доказать что существует разница между прямоугольником и треугольником, или еще что-то придумаете?
И почему вы не пишите размер Первого угла АСХ который будет заведомо меньше 90 градусов т.е. прямоугольник становится невозможен?
Именно в этом смысл- что ДВА прямых угла у треугольника не бывает. А сами треугольники существуют, ну как фигура.
Или мне надо доказывать что существуют и прямоугольники и треугольники?
Попробую совсем по простому пояснить- я не размерами углов доказываю, а количеством углов в фигурах, образуемых прямыми линиями.
При этом для устранения увиливаний все углы начальной фигуры будем считать прямыми, так с вами надежнее общаться, а то еще че-нить мне припишите и опять начнете вопросы задавать вместо того чтобы отвечать- за свои слова.
Еще подумал- может вы существование прямого угла отрицать будете? Даже придумать уже не могу, на что именно вы намекаете своим вопросом "в чем проблема?"
Напишите как-нить понятно, можно очень длинно, я пойму любой длинный текст который носит полный определенный однозначный характер
Валя2
Акула пера
11/23/2018, 3:05:32 PM
Как бы еще упростить и уточнить что же "не так"... Если один из углов фигуры является прямым, второй угол фигуры меньше прямого, то составляющие такую фигуру три бесконечные прямые линии составят фигуру из трех углов
Может об этом спор?
Может об этом спор?
Безумный Иван
Акула пера
11/23/2018, 3:45:45 PM
(Victor665 @ 23-11-2018 - 12:59)
Чрезвычайно тяжело понять то что Вы пишите и что подразумеваете.
Речь идет только о том, что возникает угол с "двух" сторон точки пересечения. И значит возникает треугольник.
Что Вы подразумеваете под двумя сторонами точки? Сколько у точки сторон? Две, внутренняя и внешняя? И по какой причине должен возникнуть треугольник?
3. А проблема у вас в том, что вы закончили картинку в том месте где вам было удобно, а она бесконечная. Зачем вы обрезали треугольник? ))
А кто Вам сказал что должен там получиться треугольник? Может эти линии уходят в бесконечность и там никогда не пересекутся.
И почему вы не пишите размер Первого угла АСХ который будет заведомо меньше 90 градусов т.е. прямоугольник становится невозможен?
Пусть будет 89.(9) градусов. Это что-то меняет? Прямоугольник невозможен. Будет четырехугольник.
Именно в этом смысл- что ДВА прямых угла у треугольника не бывает. А сами треугольники существуют, ну как фигура. Почему два прямых угла у треугольника не бывает? Это кто-то доказал?
Как бы еще упростить и уточнить что же "не так"... Если один из углов фигуры является прямым, второй угол фигуры меньше прямого, то составляющие такую фигуру три бесконечные прямые линии составят фигуру из трех углов
Может об этом спор?
Кто сказал что обязательно должна получиться замкнутая фигура? Один из углов фигуры является прямым, второй угол фигуры меньше прямого. Возможно что больше углов нет. Два луча уходят в бесконечность
Чрезвычайно тяжело понять то что Вы пишите и что подразумеваете.
Речь идет только о том, что возникает угол с "двух" сторон точки пересечения. И значит возникает треугольник.
Что Вы подразумеваете под двумя сторонами точки? Сколько у точки сторон? Две, внутренняя и внешняя? И по какой причине должен возникнуть треугольник?
3. А проблема у вас в том, что вы закончили картинку в том месте где вам было удобно, а она бесконечная. Зачем вы обрезали треугольник? ))
А кто Вам сказал что должен там получиться треугольник? Может эти линии уходят в бесконечность и там никогда не пересекутся.
И почему вы не пишите размер Первого угла АСХ который будет заведомо меньше 90 градусов т.е. прямоугольник становится невозможен?
Пусть будет 89.(9) градусов. Это что-то меняет? Прямоугольник невозможен. Будет четырехугольник.
Именно в этом смысл- что ДВА прямых угла у треугольника не бывает. А сами треугольники существуют, ну как фигура. Почему два прямых угла у треугольника не бывает? Это кто-то доказал?
Как бы еще упростить и уточнить что же "не так"... Если один из углов фигуры является прямым, второй угол фигуры меньше прямого, то составляющие такую фигуру три бесконечные прямые линии составят фигуру из трех углов
Может об этом спор?
Кто сказал что обязательно должна получиться замкнутая фигура? Один из углов фигуры является прямым, второй угол фигуры меньше прямого. Возможно что больше углов нет. Два луча уходят в бесконечность
Валя2
Акула пера
11/23/2018, 6:33:50 PM
(Безумный Иван @ 23-11-2018 - 13:45)
Речь идет только о том, что возникает угол с "двух" сторон точки пересечения. И значит возникает треугольник.Что Вы подразумеваете под двумя сторонами точки? Сколько у точки сторон? Две, внутренняя и внешняя? И по какой причине должен возникнуть треугольник? Я имею ввиду картинку "крестик", именно она называется "Пересечение".
Я пользуюсь определениями Прямой и Пересечения, всё. Оба этих определения вы использовали в споре, отвечать что они такое- я не буду, если спор начнется с этих определений- то пишите их сами как автор текста в споре.
У "крестика" есть углы, они не нулевые.
Любой угол дает возможность на плоскости соединить прямые (образующие угол) отрезками, т.е. гарантированно возможен треугольник.
Прямоугольник это уже 4 угла, и треугольник никак не может быть "равен" прямоугольнику.
Точнее можно говорить о неопределенности в "бесконечном далеке", но мы с вами ее исключили- увидев угол мы точно знаем что возможен треугольник.
Ну и ВНУТРИ прямоугольника чисто из числа углов и определения Треугольника, всегда при любых условиях и при любом угле пересечения- возникает треугольник.
Я просто подменил аксиому о параллельных прямых на аксиому о существовании треугольника и четырехугольника. Но она также доказывается- как уже говорил, из определений Прямой и Пересечения.
А кто Вам сказал что должен там получиться треугольник? Может эти линии уходят в бесконечность и там никогда не пересекутся.
тогда они будут прямоугольником с 4 углами равными 90 градусов, а уже обнаружено что имеется отклонение с углом ненулевого размера.
А прямой угол существует не из спорной аксиомы, а из понятия "плоскость" и идеи "кратчайшего расстояния между точкой прямой и до второй параллельной прямой".
В доказательстве спорной аксиомы нет ничего сложного после устранения "проблемы бесконечности".
Математические следствия из вашей фразы "может линии уходят в бесконечность" вы уже не можете использовать, ибо в самом начале сделано уточнение что параллельные никогда не пересекаются.
Только при таком варианте и возможно "гарантированное" существование Прямоугольника в любых вариантах геометрической картинки с тремя прямыми из которых две параллельны.
И почему вы не пишите размер Первого угла АСХ который будет заведомо меньше 90 градусов т.е. прямоугольник становится невозможен?
Пусть будет 89.(9) градусов. Это что-то меняет? Прямоугольник невозможен. Будет четырехугольник.
С чего это )) Я же ясновидящий, так и знал что вы начнете ограничения и подмены делать ))
Именно прямоугольник заведомо может быть составлен из параллельных прямых. И если третья и первая НЕ пересекаются- то будет опять прямоугольник с "новой" стороной т.е. "другой" формы. Другой площади. И при этом точно такой же- ибо ТОЧКИ углов совпадают. А это невозможно.
Доказательством будет возможность наложить один одинаковый прямоугольник на другой и проверить "совпадение" не только угловых точек но и всей фигуры- надеюсь такую вольность вы мне позволите )) Она вполне логически возможна ибо это одно и то же- наложение угловых точек и наложение фигур.
Невозможно геометрическое изображение (на плоскости) такой фигуры которая является Прямоугольником внутри которой находится ТАКОЙ же прямоугольник ПЛЮС еще треугольник.
Еще раз- просто одну аксиому заменили на другую, которая вытекает из идеи "параллельные не пересекаются никогда, в том числе в бесконечности тоже не пересекаются т.е. могут образовать только четырехугольник, в том числе заведомо могут образовать прямоугольник".
Почему два прямых угла у треугольника не бывает? Это кто-то доказал?
Потому что такая фигура уже определена, и названа прямоугольником, а число углов у нее уже подсчитано- их четыре. Проводим снова "накладывание" одного прямоугольника (из первой и второй параллельных прямых)- на другую Пока Еще Не Известную Фигуру, видим что все точки и углы по 90 градусов совпадают, значит это четырехугольник.
А факт гарантированного существования Прямоугольника и Треугольника доказывается из определений Прямая и Пересечение- см выше.
Вопросы у вас стали очень логичные, жаль столько времени раньше потеряли.
Подскажу последний возможный вопрос на эту тему- А откуда взялось понятие "прямого угла"? ))
Я его кратко выше указал, но если будете именно к этому моменту придираться, опишу макс подробно.
Кто сказал что обязательно должна получиться замкнутая фигура? Один из углов фигуры является прямым, второй угол фигуры меньше прямого. Возможно что больше углов нет. Два луча уходят в бесконечность
Эта "фигура из второй и третьей" прямых находится внутри 4- угольника а именно внутри Прямоугольника (для наглядности) состоящего из второй и первой прямых.
Впрочем с параллелограммом и с внутренней секущей будет тоже самое рассуждение, но там станет еще в разы больше логических звеньев ))
Два луча уходящих в бесконечность уже имеются, совпадать с ними нельзя- поэтому третий луч заведомо будет внутри, и не может образовать прямоугольник с первой прямой.
Невозможно равенство (полное совпадение всех точек) для "прямоугольника" и "такого же прямоугольника плюс треугольник", лишний кусок получается.
ЗЫ- вы просто играете понятием "бесконечность"... Что и было сразу понятно.
Тогда вам не нужно было подтверждать что параллельные именно Никогда не пересекаются. Так и надо было говорить- "а кто его знает чего там происходит, где два луча уходят в бесконечность".
Но эту возможность я вам исключил первым же вопросом.
ЗЫ-2 еще видимо есть возможность все-таки поиграть размерами углов, но уж вариант 4 угла по 90 градусов не оставляет такой возможности.
Угол 180 градусов это "развернутый" угол т.е. прямая, это определение вы сами использовали.
Два таких развернутых угла это полный обзор 360 градусов.
Провести перпендикуляр всегда возможно, его понятие исходит из идеи "деления угла на равные части", после чего доказывается размер 90 градусов (т.е. это не аксиома).
А прямоугольник имеет четыре угла по 90, все определения "согласовались", треугольник с двумя прямыми углами стал невозможен.
Так что для всех доказательств всех теорем в геометрии Евклида, достаточно самих определений Точка, Прямая, Пересечение, Плоскость.
Речь идет только о том, что возникает угол с "двух" сторон точки пересечения. И значит возникает треугольник.Что Вы подразумеваете под двумя сторонами точки? Сколько у точки сторон? Две, внутренняя и внешняя? И по какой причине должен возникнуть треугольник? Я имею ввиду картинку "крестик", именно она называется "Пересечение".
Я пользуюсь определениями Прямой и Пересечения, всё. Оба этих определения вы использовали в споре, отвечать что они такое- я не буду, если спор начнется с этих определений- то пишите их сами как автор текста в споре.
У "крестика" есть углы, они не нулевые.
Любой угол дает возможность на плоскости соединить прямые (образующие угол) отрезками, т.е. гарантированно возможен треугольник.
Прямоугольник это уже 4 угла, и треугольник никак не может быть "равен" прямоугольнику.
Точнее можно говорить о неопределенности в "бесконечном далеке", но мы с вами ее исключили- увидев угол мы точно знаем что возможен треугольник.
Ну и ВНУТРИ прямоугольника чисто из числа углов и определения Треугольника, всегда при любых условиях и при любом угле пересечения- возникает треугольник.
Я просто подменил аксиому о параллельных прямых на аксиому о существовании треугольника и четырехугольника. Но она также доказывается- как уже говорил, из определений Прямой и Пересечения.
А кто Вам сказал что должен там получиться треугольник? Может эти линии уходят в бесконечность и там никогда не пересекутся.
тогда они будут прямоугольником с 4 углами равными 90 градусов, а уже обнаружено что имеется отклонение с углом ненулевого размера.
А прямой угол существует не из спорной аксиомы, а из понятия "плоскость" и идеи "кратчайшего расстояния между точкой прямой и до второй параллельной прямой".
В доказательстве спорной аксиомы нет ничего сложного после устранения "проблемы бесконечности".
Математические следствия из вашей фразы "может линии уходят в бесконечность" вы уже не можете использовать, ибо в самом начале сделано уточнение что параллельные никогда не пересекаются.
Только при таком варианте и возможно "гарантированное" существование Прямоугольника в любых вариантах геометрической картинки с тремя прямыми из которых две параллельны.
И почему вы не пишите размер Первого угла АСХ который будет заведомо меньше 90 градусов т.е. прямоугольник становится невозможен?
Пусть будет 89.(9) градусов. Это что-то меняет? Прямоугольник невозможен. Будет четырехугольник.
С чего это )) Я же ясновидящий, так и знал что вы начнете ограничения и подмены делать ))
Именно прямоугольник заведомо может быть составлен из параллельных прямых. И если третья и первая НЕ пересекаются- то будет опять прямоугольник с "новой" стороной т.е. "другой" формы. Другой площади. И при этом точно такой же- ибо ТОЧКИ углов совпадают. А это невозможно.
Доказательством будет возможность наложить один одинаковый прямоугольник на другой и проверить "совпадение" не только угловых точек но и всей фигуры- надеюсь такую вольность вы мне позволите )) Она вполне логически возможна ибо это одно и то же- наложение угловых точек и наложение фигур.
Невозможно геометрическое изображение (на плоскости) такой фигуры которая является Прямоугольником внутри которой находится ТАКОЙ же прямоугольник ПЛЮС еще треугольник.
Еще раз- просто одну аксиому заменили на другую, которая вытекает из идеи "параллельные не пересекаются никогда, в том числе в бесконечности тоже не пересекаются т.е. могут образовать только четырехугольник, в том числе заведомо могут образовать прямоугольник".
Почему два прямых угла у треугольника не бывает? Это кто-то доказал?
Потому что такая фигура уже определена, и названа прямоугольником, а число углов у нее уже подсчитано- их четыре. Проводим снова "накладывание" одного прямоугольника (из первой и второй параллельных прямых)- на другую Пока Еще Не Известную Фигуру, видим что все точки и углы по 90 градусов совпадают, значит это четырехугольник.
А факт гарантированного существования Прямоугольника и Треугольника доказывается из определений Прямая и Пересечение- см выше.
Вопросы у вас стали очень логичные, жаль столько времени раньше потеряли.
Подскажу последний возможный вопрос на эту тему- А откуда взялось понятие "прямого угла"? ))
Я его кратко выше указал, но если будете именно к этому моменту придираться, опишу макс подробно.
Кто сказал что обязательно должна получиться замкнутая фигура? Один из углов фигуры является прямым, второй угол фигуры меньше прямого. Возможно что больше углов нет. Два луча уходят в бесконечность
Эта "фигура из второй и третьей" прямых находится внутри 4- угольника а именно внутри Прямоугольника (для наглядности) состоящего из второй и первой прямых.
Впрочем с параллелограммом и с внутренней секущей будет тоже самое рассуждение, но там станет еще в разы больше логических звеньев ))
Два луча уходящих в бесконечность уже имеются, совпадать с ними нельзя- поэтому третий луч заведомо будет внутри, и не может образовать прямоугольник с первой прямой.
Невозможно равенство (полное совпадение всех точек) для "прямоугольника" и "такого же прямоугольника плюс треугольник", лишний кусок получается.
ЗЫ- вы просто играете понятием "бесконечность"... Что и было сразу понятно.
Тогда вам не нужно было подтверждать что параллельные именно Никогда не пересекаются. Так и надо было говорить- "а кто его знает чего там происходит, где два луча уходят в бесконечность".
Но эту возможность я вам исключил первым же вопросом.
ЗЫ-2 еще видимо есть возможность все-таки поиграть размерами углов, но уж вариант 4 угла по 90 градусов не оставляет такой возможности.
Угол 180 градусов это "развернутый" угол т.е. прямая, это определение вы сами использовали.
Два таких развернутых угла это полный обзор 360 градусов.
Провести перпендикуляр всегда возможно, его понятие исходит из идеи "деления угла на равные части", после чего доказывается размер 90 градусов (т.е. это не аксиома).
А прямоугольник имеет четыре угла по 90, все определения "согласовались", треугольник с двумя прямыми углами стал невозможен.
Так что для всех доказательств всех теорем в геометрии Евклида, достаточно самих определений Точка, Прямая, Пересечение, Плоскость.
Валя2
Акула пера
11/23/2018, 6:56:00 PM
Будет время, попробую еще доказать что сумма углов треугольника равна 180 градусов ))
Ибо как гласят классики геометрии-
"Следует подчеркнуть, что замена одной из этих аксиом на другую, превращает её в теорему, уже требующую доказательства. Так, вместо аксиомы параллельных прямых можно использовать в качестве аксиомы свойство углов треугольника («сумма углов треугольника равна 180º »). Но тогда необходимо доказывать аксиому о параллельных прямых."
Так что если доказать сумму 180 градусов (она как раз очевидна для прямоугольника и треугольника с прямыми углами, эту идею я и использую в последних постах) то все классики согласятся с доказательством "спорной аксиомы" ))
Ибо как гласят классики геометрии-
"Следует подчеркнуть, что замена одной из этих аксиом на другую, превращает её в теорему, уже требующую доказательства. Так, вместо аксиомы параллельных прямых можно использовать в качестве аксиомы свойство углов треугольника («сумма углов треугольника равна 180º »). Но тогда необходимо доказывать аксиому о параллельных прямых."
Так что если доказать сумму 180 градусов (она как раз очевидна для прямоугольника и треугольника с прямыми углами, эту идею я и использую в последних постах) то все классики согласятся с доказательством "спорной аксиомы" ))
Безумный Иван
Акула пера
11/23/2018, 7:07:24 PM
А что у нас, на прямоугольнике свет клином сошелся?
Если третья линия будет иметь небольшой угол относительно второй, то и шпалы соединяющие первую и третью линию будут не под 90 градусов. И четырехугольник со сторонами первая линия, третья линия и две шпалы - будет не прямоугольник, а трапеция. Равнобедренная трапеция.
Если третья линия будет иметь небольшой угол относительно второй, то и шпалы соединяющие первую и третью линию будут не под 90 градусов. И четырехугольник со сторонами первая линия, третья линия и две шпалы - будет не прямоугольник, а трапеция. Равнобедренная трапеция.
Валя2
Акула пера
11/23/2018, 7:24:32 PM
(Безумный Иван @ 23-11-2018 - 17:07)
А что у нас, на прямоугольнике свет клином сошелся?
Если третья линия будет иметь небольшой угол относительно второй, то и шпалы соединяющие первую и третью линию будут не под 90 градусов. И четырехугольник со сторонами первая линия, третья линия и две шпалы - будет не прямоугольник, а трапеция. Равнобедренная трапеция. а зачем лишние слова подбирать к уже и без этого длиннющим текстам? Прямоугольник нагляднее параллелограмма, я зря сначала общий случай вам показывал.
Идея прямого угла а именно-
1. Линии которая делит развернутый угол 180 градусов пополам
2. Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой
-не требует использования спорной аксиомы.
А первые три аксиомы геометрии Евклида это суть определения "плоскости, прямой, точки".
Вот ими и надо пользоваться. Прямой угол можно определить именно из идеи что "сами без специального отрезка, параллельные прямые никогда не пересекутся", вы эту идею подтвердили.
Так что любой "небольшой" угол приводит к появлению очевидной алогичности в виде ситуации когда есть "Первый прямоугольник" три точки которого совпадают с новым Вторым прямоугольником- но имеется отличие так как ВНУТРИ первого лежит еще и " Второй прямоугольник с Треугольником бесконечно малой но НЕ нулевой площади"
Что невозможно. Значит там два треугольника, при любом бесконечно малом угле.
ОШИБКУ уже показывайте мою, чего вопросы то задавать вечно )) Или признавайте, что понятие Очевидности запросто можно доказывать, пояснять, аргументировать еще более очевидными понятиями. И это будет именно "доказательство".
Логическое заявление о том, что Если три стороны, три угла прямоугольника совпадают- то это должен быть тот же самый прямоугольник, и значит никакой третьей "параллельной" (которая образует Второй прямоугольник) прямой нету- вполне является доказательством а не просто "рассуждением".
А что у нас, на прямоугольнике свет клином сошелся?
Если третья линия будет иметь небольшой угол относительно второй, то и шпалы соединяющие первую и третью линию будут не под 90 градусов. И четырехугольник со сторонами первая линия, третья линия и две шпалы - будет не прямоугольник, а трапеция. Равнобедренная трапеция. а зачем лишние слова подбирать к уже и без этого длиннющим текстам? Прямоугольник нагляднее параллелограмма, я зря сначала общий случай вам показывал.
Идея прямого угла а именно-
1. Линии которая делит развернутый угол 180 градусов пополам
2. Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой
-не требует использования спорной аксиомы.
А первые три аксиомы геометрии Евклида это суть определения "плоскости, прямой, точки".
Вот ими и надо пользоваться. Прямой угол можно определить именно из идеи что "сами без специального отрезка, параллельные прямые никогда не пересекутся", вы эту идею подтвердили.
Так что любой "небольшой" угол приводит к появлению очевидной алогичности в виде ситуации когда есть "Первый прямоугольник" три точки которого совпадают с новым Вторым прямоугольником- но имеется отличие так как ВНУТРИ первого лежит еще и " Второй прямоугольник с Треугольником бесконечно малой но НЕ нулевой площади"
Что невозможно. Значит там два треугольника, при любом бесконечно малом угле.
ОШИБКУ уже показывайте мою, чего вопросы то задавать вечно )) Или признавайте, что понятие Очевидности запросто можно доказывать, пояснять, аргументировать еще более очевидными понятиями. И это будет именно "доказательство".
Логическое заявление о том, что Если три стороны, три угла прямоугольника совпадают- то это должен быть тот же самый прямоугольник, и значит никакой третьей "параллельной" (которая образует Второй прямоугольник) прямой нету- вполне является доказательством а не просто "рассуждением".
Безумный Иван
Акула пера
11/23/2018, 7:35:47 PM
(Victor665 @ 23-11-2018 - 17:24)
Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой не обязательно под прямым углом. Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Так что любой "небольшой" угол приводит к появлению очевидной алогичности в виде ситуации когда есть "Первый прямоугольник" три точки которого совпадают с новым Вторым прямоугольником- но имеется отличие так как ВНУТРИ первого лежит еще и " Второй прямоугольник с Треугольником бесконечно малой но НЕ нулевой площади"
Что невозможно. Значит там два треугольника, при любом бесконечно малом угле.
ОШИБКУ уже показывайте мою, чего вопросы то задавать вечно ))
Ошибка в том, что вторая фигура будет не прямоугольником, а равнобедренной трапецией.
Логическое заявление о том, что Если три стороны, три угла прямоугольника совпадают- то это должен быть тот же самый прямоугольник, и значит никакой третьей "параллельной" (которая образует Второй прямоугольник) прямой нету- вполне является доказательством а не просто "рассуждением".
Не совпадают. Если настаиваете на прямом угле шпал относительно первой линии. На моем рисунке ABDC не совпадает с ABXC
Идея прямого угла а именно-
1. Линии которая делит развернутый угол 180 градусов пополам
2. Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой
-не требует использования спорной аксиомы.
Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой не обязательно под прямым углом. Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Так что любой "небольшой" угол приводит к появлению очевидной алогичности в виде ситуации когда есть "Первый прямоугольник" три точки которого совпадают с новым Вторым прямоугольником- но имеется отличие так как ВНУТРИ первого лежит еще и " Второй прямоугольник с Треугольником бесконечно малой но НЕ нулевой площади"
Что невозможно. Значит там два треугольника, при любом бесконечно малом угле.
ОШИБКУ уже показывайте мою, чего вопросы то задавать вечно ))
Ошибка в том, что вторая фигура будет не прямоугольником, а равнобедренной трапецией.
Логическое заявление о том, что Если три стороны, три угла прямоугольника совпадают- то это должен быть тот же самый прямоугольник, и значит никакой третьей "параллельной" (которая образует Второй прямоугольник) прямой нету- вполне является доказательством а не просто "рассуждением".
Не совпадают. Если настаиваете на прямом угле шпал относительно первой линии. На моем рисунке ABDC не совпадает с ABXC
Валя2
Акула пера
11/23/2018, 8:00:01 PM
(Безумный Иван @ 23-11-2018 - 17:35)
(Victor665 @ 23-11-2018 - 17:24)
Идея прямого угла а именно-
1. Линии которая делит развернутый угол 180 градусов пополам
2. Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой
-не требует использования спорной аксиомы.
Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой не обязательно под прямым углом. 1. Обязательно, ибо "слева" и "справа" будут отклонения от минимального расстояния, значит линия прямого угла именно "посередине" развернутого угла в 180 градусов проходит, и прямой угол именно 90 градусов.
2. Госпидя, тут же не физика а математика! Берем неискажаемый сверхпрочный угольник любого угла, с делениями на Конечном расстоянии (ибо прямая и точка из условия нам видны), берем карандаш толщины в точку, и проводим все одинаковые углы и отрезки.
Получаем параллелограмм )) Просто прямоугольник нагляднее.
Но одинаковый параллелограмм с тремя одинаковыми углами и тремя одинаковыми сторонами, не может "включать внутри себя" такой же параллелограмм с Теми же Одинаковыми углами и тремя одинаковыми сторонами но с новой четвертой стороной (которая параллельная первой) плюс треугольник Ненулевой площади.
Но лучше обсуждать прямоугольник, он заведомо существует.
Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Верно- для третьей линии не будет прямого угла а он ДОЛЖЕН Существовать )) Ибо первая и третья сами по себе ЯКОБЫ никогда не пересекаются.
Прямого угла не будет как "кратчайшего расстояния" только в треугольнике ибо там ноль будет кратчайшим, где-то ведь сойдутся НЕпараллельные прямые.
А мы рассматриваем вариант что третья тоже параллельная- значит должен быть прямой угол.
ну можно сказать "должен быть одинаковый угол" для ситуации с параллелограммом и с неискажаемым угольником которым проверяем параллельность боковых стенок.
Кароче площади фигур не будут совпадать, чисто из числа углов это получится, а не из размеров.
Так что любой "небольшой" угол приводит к появлению очевидной алогичности в виде ситуации когда есть "Первый прямоугольник" три точки которого совпадают с новым Вторым прямоугольником- но имеется отличие так как ВНУТРИ первого лежит еще и " Второй прямоугольник с Треугольником бесконечно малой но НЕ нулевой площади"
Что невозможно. Значит там два треугольника, при любом бесконечно малом угле.
ОШИБКУ уже показывайте мою, чего вопросы то задавать вечно ))
Ошибка в том, что вторая фигура будет не прямоугольником, а равнобедренной трапецией.
речь о параллелограмме была всегда, а сейчас о прямоугольнике.
Очевидное логическое звено- утверждаю что две любые параллельные прямые всегда заведомо могут образовать параллелограмм а не только трапецию, в том числе могут образовать прямоугольник
Будете ошибку показывать?
Если нет ошибки, то и первая со второй, и первая с третьей прямые должны приводить к появлению прямоугольников. У которых три стороны (нижняя "первая" и две боковых нарисованных для удобства) и три угла равны. А верхняя сторона проходит в одном случае через вторую а в другом случае через третью прямые.
Так что есть две фигуры- прямоугольник 1 и внутри него опять прямоугольник 1 плюс треугольник НЕ нулевой площади, что невозможно.
Не совпадают. Если настаиваете на прямом угле шпал относительно первой линии. На моем рисунке ABDC не совпадает с ABXC
ну да, вторая и третья не совпадают, и дают Разные и при этом Одинаковые прямоугольники с первой прямой- что невозможно.
ОШИБКУ покажите в выделенном тексте, и давайте заканчивать
(Victor665 @ 23-11-2018 - 17:24)
Идея прямого угла а именно-
1. Линии которая делит развернутый угол 180 градусов пополам
2. Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой
-не требует использования спорной аксиомы.
Линии которая из точки на прямой дает кратчайшее расстояние до параллельной прямой не обязательно под прямым углом. 1. Обязательно, ибо "слева" и "справа" будут отклонения от минимального расстояния, значит линия прямого угла именно "посередине" развернутого угла в 180 градусов проходит, и прямой угол именно 90 градусов.
2. Госпидя, тут же не физика а математика! Берем неискажаемый сверхпрочный угольник любого угла, с делениями на Конечном расстоянии (ибо прямая и точка из условия нам видны), берем карандаш толщины в точку, и проводим все одинаковые углы и отрезки.
Получаем параллелограмм )) Просто прямоугольник нагляднее.
Но одинаковый параллелограмм с тремя одинаковыми углами и тремя одинаковыми сторонами, не может "включать внутри себя" такой же параллелограмм с Теми же Одинаковыми углами и тремя одинаковыми сторонами но с новой четвертой стороной (которая параллельная первой) плюс треугольник Ненулевой площади.
Но лучше обсуждать прямоугольник, он заведомо существует.
Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Верно- для третьей линии не будет прямого угла а он ДОЛЖЕН Существовать )) Ибо первая и третья сами по себе ЯКОБЫ никогда не пересекаются.
Прямого угла не будет как "кратчайшего расстояния" только в треугольнике ибо там ноль будет кратчайшим, где-то ведь сойдутся НЕпараллельные прямые.
А мы рассматриваем вариант что третья тоже параллельная- значит должен быть прямой угол.
ну можно сказать "должен быть одинаковый угол" для ситуации с параллелограммом и с неискажаемым угольником которым проверяем параллельность боковых стенок.
Кароче площади фигур не будут совпадать, чисто из числа углов это получится, а не из размеров.
Так что любой "небольшой" угол приводит к появлению очевидной алогичности в виде ситуации когда есть "Первый прямоугольник" три точки которого совпадают с новым Вторым прямоугольником- но имеется отличие так как ВНУТРИ первого лежит еще и " Второй прямоугольник с Треугольником бесконечно малой но НЕ нулевой площади"
Что невозможно. Значит там два треугольника, при любом бесконечно малом угле.
ОШИБКУ уже показывайте мою, чего вопросы то задавать вечно ))
Ошибка в том, что вторая фигура будет не прямоугольником, а равнобедренной трапецией.
речь о параллелограмме была всегда, а сейчас о прямоугольнике.
Очевидное логическое звено- утверждаю что две любые параллельные прямые всегда заведомо могут образовать параллелограмм а не только трапецию, в том числе могут образовать прямоугольник
Будете ошибку показывать?
Если нет ошибки, то и первая со второй, и первая с третьей прямые должны приводить к появлению прямоугольников. У которых три стороны (нижняя "первая" и две боковых нарисованных для удобства) и три угла равны. А верхняя сторона проходит в одном случае через вторую а в другом случае через третью прямые.
Так что есть две фигуры- прямоугольник 1 и внутри него опять прямоугольник 1 плюс треугольник НЕ нулевой площади, что невозможно.
Не совпадают. Если настаиваете на прямом угле шпал относительно первой линии. На моем рисунке ABDC не совпадает с ABXC
ну да, вторая и третья не совпадают, и дают Разные и при этом Одинаковые прямоугольники с первой прямой- что невозможно.
ОШИБКУ покажите в выделенном тексте, и давайте заканчивать
Валя2
Акула пера
11/23/2018, 8:15:49 PM
И вообще, если уж "чистым экспериментом" пользоваться и число углов а не размеры обсуждать- то прямоугольник это фигура с углом в Одну Четвертую от "полного обзора" и в Одну Вторую от развернутого угла.
Вполне понятная фигура, позволяющая не заморачиваться цифрами 90- 180-360, а просто создать фигуру с 4 одинаковыми углами, с четырьмя четвертушками.
Главное что такая фигура полностью однозначно выглядит, однозначно определена, и исключает возможность сказок про " неопределенную Трапецию", и этого хватит для показа абсурдности двух прямоугольников внутри самого себя плюс треугольник.
Надеюсь понятия "середины, половины, равенства" не нужно доказывать а можно использовать как определения ))
Вполне понятная фигура, позволяющая не заморачиваться цифрами 90- 180-360, а просто создать фигуру с 4 одинаковыми углами, с четырьмя четвертушками.
Главное что такая фигура полностью однозначно выглядит, однозначно определена, и исключает возможность сказок про " неопределенную Трапецию", и этого хватит для показа абсурдности двух прямоугольников внутри самого себя плюс треугольник.
Надеюсь понятия "середины, половины, равенства" не нужно доказывать а можно использовать как определения ))
Безумный Иван
Акула пера
11/23/2018, 9:47:14 PM
(Victor665 @ 23-11-2018 - 18:00)
Бога нет
тут же не физика а математика! Берем неискажаемый сверхпрочный угольник любого угла, с делениями на Конечном расстоянии (ибо прямая и точка из условия нам видны), берем карандаш толщины в точку, и проводим все одинаковые углы и отрезки.
Получаем параллелограмм )) Просто прямоугольник нагляднее.
Но одинаковый параллелограмм с тремя одинаковыми углами и тремя одинаковыми сторонами, не может "включать внутри себя" такой же параллелограмм с Теми же Одинаковыми углами и тремя одинаковыми сторонами но с новой четвертой стороной (которая параллельная первой) плюс треугольник Ненулевой площади.
На моем рисунке наглядно видно что параллелограмм (прямоугольник) ABDC включает в себя другой параллелограмм ABXC И никто не обещал что углы у него должны быть равны, а тем более все прямые.
Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Верно- для третьей линии не будет прямого угла а он ДОЛЖЕН Существовать )) Ибо первая и третья сами по себе ЯКОБЫ никогда не пересекаются.
Почему ДОЛЖЕН? Согласно какой теоремы?
Прямого угла не будет как "кратчайшего расстояния" только в треугольнике ибо там ноль будет кратчайшим, где-то ведь сойдутся НЕпараллельные прямые.
НЕпараллельные сойдутся, а параллельные не сойдутся.
А мы рассматриваем вариант что третья тоже параллельная- значит должен быть прямой угол.
Параллельная, значит непересекающаяся. Никто не обещал что она должна быть обязательно под прямым углом к перпендикуляру первой линии
ну можно сказать "должен быть одинаковый угол" для ситуации с параллелограммом и с неискажаемым угольником которым проверяем параллельность боковых стенок.
Параллельность можно проверить только одним способом. Посмотреть пересекаются ли они или нет. Какой тут к черту угольник?
Кароче площади фигур не будут совпадать, чисто из числа углов это получится, а не из размеров.
А они обязаны совпадать?
Очевидное логическое звено- утверждаю что две любые параллельные прямые всегда заведомо могут образовать параллелограмм а не только трапецию, в том числе могут образовать прямоугольник
Будете ошибку показывать?
С этим согласен
Если нет ошибки, то и первая со второй, и первая с третьей прямые должны приводить к появлению прямоугольников. У которых три стороны (нижняя "первая" и две боковых нарисованных для удобства) и три угла равны. А верхняя сторона проходит в одном случае через вторую а в другом случае через третью прямые.
На моем рисунке видно что два угла у этих двух параллелограммов не равны.
Так что есть две фигуры- прямоугольник 1 и внутри него опять прямоугольник 1 плюс треугольник НЕ нулевой площади, что невозможно.
Первый прямоугольник, внутри него параллелограмм плюс треугольник DCX
ну да, вторая и третья не совпадают, и дают Разные и при этом Одинаковые прямоугольники с первой прямой- что невозможно.
Разные значит НЕ одинаковые
ОШИБКУ покажите в выделенном тексте, и давайте заканчивать
Все ошибки я показал. Вы в любой момент можете закончить спор признав что Вам не удалось совершить революцию в геометрии и доказать недоказуемое.
Госпидя,
Бога нет
тут же не физика а математика! Берем неискажаемый сверхпрочный угольник любого угла, с делениями на Конечном расстоянии (ибо прямая и точка из условия нам видны), берем карандаш толщины в точку, и проводим все одинаковые углы и отрезки.
Получаем параллелограмм )) Просто прямоугольник нагляднее.
Но одинаковый параллелограмм с тремя одинаковыми углами и тремя одинаковыми сторонами, не может "включать внутри себя" такой же параллелограмм с Теми же Одинаковыми углами и тремя одинаковыми сторонами но с новой четвертой стороной (которая параллельная первой) плюс треугольник Ненулевой площади.
На моем рисунке наглядно видно что параллелограмм (прямоугольник) ABDC включает в себя другой параллелограмм ABXC И никто не обещал что углы у него должны быть равны, а тем более все прямые.
Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Верно- для третьей линии не будет прямого угла а он ДОЛЖЕН Существовать )) Ибо первая и третья сами по себе ЯКОБЫ никогда не пересекаются.
Почему ДОЛЖЕН? Согласно какой теоремы?
Прямого угла не будет как "кратчайшего расстояния" только в треугольнике ибо там ноль будет кратчайшим, где-то ведь сойдутся НЕпараллельные прямые.
НЕпараллельные сойдутся, а параллельные не сойдутся.
А мы рассматриваем вариант что третья тоже параллельная- значит должен быть прямой угол.
Параллельная, значит непересекающаяся. Никто не обещал что она должна быть обязательно под прямым углом к перпендикуляру первой линии
ну можно сказать "должен быть одинаковый угол" для ситуации с параллелограммом и с неискажаемым угольником которым проверяем параллельность боковых стенок.
Параллельность можно проверить только одним способом. Посмотреть пересекаются ли они или нет. Какой тут к черту угольник?
Кароче площади фигур не будут совпадать, чисто из числа углов это получится, а не из размеров.
А они обязаны совпадать?
Очевидное логическое звено- утверждаю что две любые параллельные прямые всегда заведомо могут образовать параллелограмм а не только трапецию, в том числе могут образовать прямоугольник
Будете ошибку показывать?
С этим согласен
Если нет ошибки, то и первая со второй, и первая с третьей прямые должны приводить к появлению прямоугольников. У которых три стороны (нижняя "первая" и две боковых нарисованных для удобства) и три угла равны. А верхняя сторона проходит в одном случае через вторую а в другом случае через третью прямые.
На моем рисунке видно что два угла у этих двух параллелограммов не равны.
Так что есть две фигуры- прямоугольник 1 и внутри него опять прямоугольник 1 плюс треугольник НЕ нулевой площади, что невозможно.
Первый прямоугольник, внутри него параллелограмм плюс треугольник DCX
ну да, вторая и третья не совпадают, и дают Разные и при этом Одинаковые прямоугольники с первой прямой- что невозможно.
Разные значит НЕ одинаковые
ОШИБКУ покажите в выделенном тексте, и давайте заканчивать
Все ошибки я показал. Вы в любой момент можете закончить спор признав что Вам не удалось совершить революцию в геометрии и доказать недоказуемое.
Валя2
Акула пера
11/24/2018, 3:30:19 AM
(Безумный Иван @ 23-11-2018 - 19:47)
На моем рисунке наглядно видно что параллелограмм (прямоугольник) ABDC включает в себя другой параллелограмм ABXC И никто не обещал что углы у него должны быть равны, а тем более все прямые.
ну вы уже мне предъявляете необходимость доказывать просто каждое слово.
Давайте вы один раз внимательно сами осмыслите хотя бы то, что цитируете и комментируете.
Итак- у прямогульника все углы равны, составляют одну четвертушку от полного "угла обзора". Цифру 360 градусов вообще не использую, всё буду исчислять и "измерять" в ШТУКАХ где только можно.
Значит если с верхней (начальной, по вашему рисунку) прямой образуется Первый прямоугольник со стороной в виде второй параллельной прямой, то точно также гипотетически якобы может от верхней начальной прямой образоваться и Второй прямоугольник со стороной в виде третьей параллельной прямой.
Углы в левой части рисунка равны для ОБОИХ прямоугольников, там просто точка пересечения, из которой заведомо идет одна и та же прямая линия под прямым углом к начальной первой верхней прямой.
Значит два угла (на вашем рисунке в левой части) совпадают для обоих прямоугольников.
Дальше на произвольном расстоянии проводим еще одну линию под прямым углом и оцениваем картинку.
На самом деле просто под "таким же", что математически возможно, но Прямой угол нагляднее, и кстати определение Прямоугольника сразу означает что сумма углов внутреннего прямоугольного треугольника равна половине суммы углов самого прямоугольника, и этого вопщем уже достаточно для нашей "спорной аксиомы".
Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Верно- для третьей линии не будет прямого угла а он ДОЛЖЕН Существовать )) Ибо первая и третья сами по себе ЯКОБЫ никогда не пересекаются.
Почему ДОЛЖЕН? Согласно какой теоремы?
Прямой угол всегда существует для понятия Прямая линия. Такой же прямой угол будет для "параллельной линии".
Для любой прямой существует свой Прямой угол, он образуется линией которая делит развернутый угол пополам, по одной четвертушке от полного угла обзора.
Это следует не из спорной аксиомы а из понятия "равенства" и "половины".
Если от одной прямой идет прямой угол, то он также будет прямым углом для параллельной прямой. Иначе невозможна фигура Прямоугольник, невозможна "кратчайшая линия от точки на одной прямой- к другой параллельной прямой"- что неверно ибо прямоугольники существуют.
Считаю использование понятия "развернутый угол образованный прямой линией" вполне корректным и вполне достаточным для введения фигуры Прямоугольник, без спорной аксиомы.
Прямой угол в виде отрезка соединяющего две прямые, не будет "прямым для обеих" параллельных прямых только в том случае, если они не параллельны а где-то вдалеке пересекаются.
В любом случае в подобных логических звеньях вы не можете просто "спрашивать", вам надо показывать мои ОШИБКИ т.е. опровергать мои логические утверждения, чего как вы сами понимаете- вы никогда не сможете сделать ибо спорная аксиома- неопровергаемая.
Так что получаются ДВА разных но при этом Одинаковых прямоугольника, что невозможно.
ЗЫ- еще раз признаю что заменил аксиому на утверждение о существовании Треугольника и Прямоугольника. Просто еще более упростил текст спорной аксиомы.
Докажите что это ошибочные утверждения и Прямоугольник невозможен в общем случае ЛЮБЫХ параллельных прямых.
А мы рассматриваем вариант что третья тоже параллельная- значит должен быть прямой угол.
Параллельная, значит непересекающаяся. Никто не обещал что она должна быть обязательно под прямым углом к перпендикуляру первой линии
Она не может быть под другим углом, так как прямой угол это кратчайшее расстояние от точки на одной прямой- до другой параллельной прямой. И с любой стороны отрезка это "кратчайшее расстояние будет одним и тем же, и угол отрезка с прямой будет всегда прямым.
Иное означает что исчезает понятие "прямолинейности".
Причем тут вроде бы даже аксиома конгруэнтности не нужна, речь просто об одном и том же отрезке имеющем одно и то же свойство "кратчайшего расстояния" между параллельными прямыми.
КСТАТИ, ну тут подумать надо- но возможно наиболее кратким будет текст доказательства спорной аксиомы в стиле "кратчайшее расстояние между параллельными прямыми не может изменяться по всей их бесконечной протяженности. Иное означает что прямые сближаются и пересекаются".
Впрочем подробно доказывать такое видимо все равно придется через уже много раз описанное сравнение Первого Прямоугольника с "таким же но другим" внутренним Прямоугольником плюс Треугольник.
ну можно сказать "должен быть одинаковый угол" для ситуации с параллелограммом и с неискажаемым угольником которым проверяем параллельность боковых стенок.
Параллельность можно проверить только одним способом. Посмотреть пересекаются ли они или нет. Какой тут к черту угольник?
речь про боковые отрезки, "секущие"- их заведомо можно под одним углом провести, т.е. Существует фигура Параллелограмм.
Но с прямоугольником проще- ибо прямой угол можно определить без понятия "измерение угла", а только через понятия "середина, равны, кратчайшее расстояние".
Кароче площади фигур не будут совпадать, чисто из числа углов это получится, а не из размеров.
А они обязаны совпадать?
в прямоугольнике три угла и три стороны (основная начальная прямая и две боковых стороны) совпали, значит это один прямоугольник. Иное противоречит определению "полного развернутого угла", это однозначное логическое звено а не "аксиома"- если не согласны с ним то Опровергайте.
Очевидное логическое звено- утверждаю что две любые параллельные прямые всегда заведомо могут образовать параллелограмм а не только трапецию, в том числе могут образовать прямоугольник
Будете ошибку показывать?
С этим согласен
это утверждение более простое и наглядное, чем спорная аксиома, вот и все.
ну да, вторая и третья не совпадают, и дают Разные и при этом Одинаковые прямоугольники с первой прямой- что невозможно.
Разные значит НЕ одинаковые
ну да, а в нашем случае на картинке где предположительно имеется третья параллельная прямая- возникают предположительно разные но геометрически одинаковые прямоугольники.
При этом возникает очевидная абсурдность в виде равенства прямоугольника с таким же прямоугольником ПЛЮС треугольник с ненулевой площадью.
Доказательство от обратного, от противного, вы же сами его рисуете на картинке- это самое предположение. И при рассмотрении картинки доказываем что предположение невозможно.
Давайте ниже уровня средней школы не опускаться.
Если нет ошибки, то и первая со второй, и первая с третьей прямые должны приводить к появлению прямоугольников. У которых три стороны (нижняя "первая" и две боковых нарисованных для удобства) и три угла равны. А верхняя сторона проходит в одном случае через вторую а в другом случае через третью прямые.
На моем рисунке видно что два угла у этих двух параллелограммов не равны.
Предположительно видно.
А при математической проверке видно что это невозможное предположение т.е. третья прямая не существует.
А как вы думаете используется логическое понятие "Противоречие"?
Именно так и доказывается что бог описываемый в мировых религиях- не существует.
Так что есть две фигуры- прямоугольник 1 и внутри него опять прямоугольник 1 плюс треугольник НЕ нулевой площади, что невозможно.
Первый прямоугольник, внутри него параллелограмм плюс треугольник DCX
Почти верно- только не параллелограмм а некий кусок прямоугольника с косой частью, а ДОЛЖЕН быть именно прямоугольник, ибо прямой угол соединяет параллельные прямые кратчайшим расстоянием.
Если угол не прямой, то нет параллельности.
ОШИБКУ покажите в выделенном тексте, и давайте заканчивать
Все ошибки я показал
вы задали вопросы и сослались на предположительную картинку которая доказанно невозможна.
На моем рисунке наглядно видно что параллелограмм (прямоугольник) ABDC включает в себя другой параллелограмм ABXC И никто не обещал что углы у него должны быть равны, а тем более все прямые.
ну вы уже мне предъявляете необходимость доказывать просто каждое слово.
Давайте вы один раз внимательно сами осмыслите хотя бы то, что цитируете и комментируете.
Итак- у прямогульника все углы равны, составляют одну четвертушку от полного "угла обзора". Цифру 360 градусов вообще не использую, всё буду исчислять и "измерять" в ШТУКАХ где только можно.
Значит если с верхней (начальной, по вашему рисунку) прямой образуется Первый прямоугольник со стороной в виде второй параллельной прямой, то точно также гипотетически якобы может от верхней начальной прямой образоваться и Второй прямоугольник со стороной в виде третьей параллельной прямой.
Углы в левой части рисунка равны для ОБОИХ прямоугольников, там просто точка пересечения, из которой заведомо идет одна и та же прямая линия под прямым углом к начальной первой верхней прямой.
Значит два угла (на вашем рисунке в левой части) совпадают для обоих прямоугольников.
Дальше на произвольном расстоянии проводим еще одну линию под прямым углом и оцениваем картинку.
На самом деле просто под "таким же", что математически возможно, но Прямой угол нагляднее, и кстати определение Прямоугольника сразу означает что сумма углов внутреннего прямоугольного треугольника равна половине суммы углов самого прямоугольника, и этого вопщем уже достаточно для нашей "спорной аксиомы".
Если третья линия будет иметь угол относительно первой, кратчайшая не будет под прямым углом. А если настаиваете на том что бы шпала была под прямым углом к первой линии, к третьей она точно не будет под прямым углом.
Верно- для третьей линии не будет прямого угла а он ДОЛЖЕН Существовать )) Ибо первая и третья сами по себе ЯКОБЫ никогда не пересекаются.
Почему ДОЛЖЕН? Согласно какой теоремы?
Прямой угол всегда существует для понятия Прямая линия. Такой же прямой угол будет для "параллельной линии".
Для любой прямой существует свой Прямой угол, он образуется линией которая делит развернутый угол пополам, по одной четвертушке от полного угла обзора.
Это следует не из спорной аксиомы а из понятия "равенства" и "половины".
Если от одной прямой идет прямой угол, то он также будет прямым углом для параллельной прямой. Иначе невозможна фигура Прямоугольник, невозможна "кратчайшая линия от точки на одной прямой- к другой параллельной прямой"- что неверно ибо прямоугольники существуют.
Считаю использование понятия "развернутый угол образованный прямой линией" вполне корректным и вполне достаточным для введения фигуры Прямоугольник, без спорной аксиомы.
Прямой угол в виде отрезка соединяющего две прямые, не будет "прямым для обеих" параллельных прямых только в том случае, если они не параллельны а где-то вдалеке пересекаются.
В любом случае в подобных логических звеньях вы не можете просто "спрашивать", вам надо показывать мои ОШИБКИ т.е. опровергать мои логические утверждения, чего как вы сами понимаете- вы никогда не сможете сделать ибо спорная аксиома- неопровергаемая.
Так что получаются ДВА разных но при этом Одинаковых прямоугольника, что невозможно.
ЗЫ- еще раз признаю что заменил аксиому на утверждение о существовании Треугольника и Прямоугольника. Просто еще более упростил текст спорной аксиомы.
Докажите что это ошибочные утверждения и Прямоугольник невозможен в общем случае ЛЮБЫХ параллельных прямых.
А мы рассматриваем вариант что третья тоже параллельная- значит должен быть прямой угол.
Параллельная, значит непересекающаяся. Никто не обещал что она должна быть обязательно под прямым углом к перпендикуляру первой линии
Она не может быть под другим углом, так как прямой угол это кратчайшее расстояние от точки на одной прямой- до другой параллельной прямой. И с любой стороны отрезка это "кратчайшее расстояние будет одним и тем же, и угол отрезка с прямой будет всегда прямым.
Иное означает что исчезает понятие "прямолинейности".
Причем тут вроде бы даже аксиома конгруэнтности не нужна, речь просто об одном и том же отрезке имеющем одно и то же свойство "кратчайшего расстояния" между параллельными прямыми.
КСТАТИ, ну тут подумать надо- но возможно наиболее кратким будет текст доказательства спорной аксиомы в стиле "кратчайшее расстояние между параллельными прямыми не может изменяться по всей их бесконечной протяженности. Иное означает что прямые сближаются и пересекаются".
Впрочем подробно доказывать такое видимо все равно придется через уже много раз описанное сравнение Первого Прямоугольника с "таким же но другим" внутренним Прямоугольником плюс Треугольник.
ну можно сказать "должен быть одинаковый угол" для ситуации с параллелограммом и с неискажаемым угольником которым проверяем параллельность боковых стенок.
Параллельность можно проверить только одним способом. Посмотреть пересекаются ли они или нет. Какой тут к черту угольник?
речь про боковые отрезки, "секущие"- их заведомо можно под одним углом провести, т.е. Существует фигура Параллелограмм.
Но с прямоугольником проще- ибо прямой угол можно определить без понятия "измерение угла", а только через понятия "середина, равны, кратчайшее расстояние".
Кароче площади фигур не будут совпадать, чисто из числа углов это получится, а не из размеров.
А они обязаны совпадать?
в прямоугольнике три угла и три стороны (основная начальная прямая и две боковых стороны) совпали, значит это один прямоугольник. Иное противоречит определению "полного развернутого угла", это однозначное логическое звено а не "аксиома"- если не согласны с ним то Опровергайте.
Очевидное логическое звено- утверждаю что две любые параллельные прямые всегда заведомо могут образовать параллелограмм а не только трапецию, в том числе могут образовать прямоугольник
Будете ошибку показывать?
С этим согласен
это утверждение более простое и наглядное, чем спорная аксиома, вот и все.
ну да, вторая и третья не совпадают, и дают Разные и при этом Одинаковые прямоугольники с первой прямой- что невозможно.
Разные значит НЕ одинаковые
ну да, а в нашем случае на картинке где предположительно имеется третья параллельная прямая- возникают предположительно разные но геометрически одинаковые прямоугольники.
При этом возникает очевидная абсурдность в виде равенства прямоугольника с таким же прямоугольником ПЛЮС треугольник с ненулевой площадью.
Доказательство от обратного, от противного, вы же сами его рисуете на картинке- это самое предположение. И при рассмотрении картинки доказываем что предположение невозможно.
Давайте ниже уровня средней школы не опускаться.
Если нет ошибки, то и первая со второй, и первая с третьей прямые должны приводить к появлению прямоугольников. У которых три стороны (нижняя "первая" и две боковых нарисованных для удобства) и три угла равны. А верхняя сторона проходит в одном случае через вторую а в другом случае через третью прямые.
На моем рисунке видно что два угла у этих двух параллелограммов не равны.
Предположительно видно.
А при математической проверке видно что это невозможное предположение т.е. третья прямая не существует.
А как вы думаете используется логическое понятие "Противоречие"?
Именно так и доказывается что бог описываемый в мировых религиях- не существует.
Так что есть две фигуры- прямоугольник 1 и внутри него опять прямоугольник 1 плюс треугольник НЕ нулевой площади, что невозможно.
Первый прямоугольник, внутри него параллелограмм плюс треугольник DCX
Почти верно- только не параллелограмм а некий кусок прямоугольника с косой частью, а ДОЛЖЕН быть именно прямоугольник, ибо прямой угол соединяет параллельные прямые кратчайшим расстоянием.
Если угол не прямой, то нет параллельности.
ОШИБКУ покажите в выделенном тексте, и давайте заканчивать
Все ошибки я показал
вы задали вопросы и сослались на предположительную картинку которая доказанно невозможна.
Валя2
Акула пера
11/24/2018, 3:36:55 AM
Пока вижу спор только по одному моменту- что такое прямой угол.
Еще раз-
1. Линия соединяющая точку на прямой с другой параллельной прямой кратчайшим образом
2. Угол равный половине от развернутого угла (образованного прямой линией).
Совсем кратко- параллельные прямые гарантированно составляют прямоугольник с помощью двух отрезков в любом месте этих прямых. Вроде тут не было спора.
Еще раз-
1. Линия соединяющая точку на прямой с другой параллельной прямой кратчайшим образом
2. Угол равный половине от развернутого угла (образованного прямой линией).
Совсем кратко- параллельные прямые гарантированно составляют прямоугольник с помощью двух отрезков в любом месте этих прямых. Вроде тут не было спора.
Безумный Иван
Акула пера
11/24/2018, 4:00:42 AM
(Victor665 @ 24-11-2018 - 01:30)
Значит если с верхней (начальной, по вашему рисунку) прямой образуется Первый прямоугольник со стороной в виде второй параллельной прямой, то точно также гипотетически якобы может от верхней начальной прямой образоваться и Второй прямоугольник со стороной в виде третьей параллельной прямой.
Вот тут у Вас ошибка.
Второй не будет прямоугольником. Параллелограммом будет, а прямоугольник только первый, который построен на той параллельной прямой, не имеющей угла отклонения от перпендикуляра. А вторая параллельная имеет отклонение от перпендикуляра на определенный угол. Но она все равно параллельная, потому что не пересекается с первой, хоть и имеет угол отклонения. Так что у той фигуры только два угла прямые, которые образованы первой линией и шпалами. И шпалы у второй фигуры будут разного размера.Но параллелограммом его назвать можно, потому что противоположные стороны у него параллельны, то есть линии образующие эти стороны не пересекаются.
Дальше и цитировать нет смысла. Ибо все Ваше доказательство крутится относительно заблуждения что все углы обоих четырехугольников должны быть прямые. Этого никто не обещал.
Пока вижу спор только по одному моменту- что такое прямой угол.
Еще раз-
1. Линия соединяющая точку на прямой с другой параллельной прямой кратчайшим образом
2. Угол равный половине от развернутого угла (образованного прямой линией).
Что такое прямой угол тут согласен только с пунктом 2.
90 градусов это прямой угол.
Совсем кратко- параллельные прямые гарантированно составляют прямоугольник с помощью двух отрезков в любом месте этих прямых. Вроде тут не было спора.
Прямоугольник они составляют только с той второй параллельной прямой, которая составляет угол 90 градусов со шпалой. Со всеми остальными параллельными, которые составляют угол отличный от 90 градусов прямоугольника не будет.
Значит если с верхней (начальной, по вашему рисунку) прямой образуется Первый прямоугольник со стороной в виде второй параллельной прямой, то точно также гипотетически якобы может от верхней начальной прямой образоваться и Второй прямоугольник со стороной в виде третьей параллельной прямой.
Вот тут у Вас ошибка.
Второй не будет прямоугольником. Параллелограммом будет, а прямоугольник только первый, который построен на той параллельной прямой, не имеющей угла отклонения от перпендикуляра. А вторая параллельная имеет отклонение от перпендикуляра на определенный угол. Но она все равно параллельная, потому что не пересекается с первой, хоть и имеет угол отклонения. Так что у той фигуры только два угла прямые, которые образованы первой линией и шпалами. И шпалы у второй фигуры будут разного размера.Но параллелограммом его назвать можно, потому что противоположные стороны у него параллельны, то есть линии образующие эти стороны не пересекаются.
Дальше и цитировать нет смысла. Ибо все Ваше доказательство крутится относительно заблуждения что все углы обоих четырехугольников должны быть прямые. Этого никто не обещал.
Пока вижу спор только по одному моменту- что такое прямой угол.
Еще раз-
1. Линия соединяющая точку на прямой с другой параллельной прямой кратчайшим образом
2. Угол равный половине от развернутого угла (образованного прямой линией).
Что такое прямой угол тут согласен только с пунктом 2.
90 градусов это прямой угол.
Совсем кратко- параллельные прямые гарантированно составляют прямоугольник с помощью двух отрезков в любом месте этих прямых. Вроде тут не было спора.
Прямоугольник они составляют только с той второй параллельной прямой, которая составляет угол 90 градусов со шпалой. Со всеми остальными параллельными, которые составляют угол отличный от 90 градусов прямоугольника не будет.
Валя2
Акула пера
11/24/2018, 1:24:21 PM
(Безумный Иван @ 24-11-2018 - 02:00)
(Victor665 @ 24-11-2018 - 01:30)
Значит если с верхней (начальной, по вашему рисунку) прямой образуется Первый прямоугольник со стороной в виде второй параллельной прямой, то точно также гипотетически якобы может от верхней начальной прямой образоваться и Второй прямоугольник со стороной в виде третьей параллельной прямой. Вот тут у Вас ошибка.
Второй не будет прямоугольником.
Верно- не будет. А возможность построения прямоугольника должна быть. А ее нету.
Если одна прямая не позволяет построить прямоугольник с другой прямой, то она не является параллельной первой.
ЧТД.
Совсем кратко- параллельные прямые гарантированно составляют прямоугольник с помощью двух отрезков в любом месте этих прямых. Вроде тут не было спора.
Прямоугольник они составляют только с той второй параллельной прямой, которая составляет угол 90 градусов со шпалой. Со всеми остальными параллельными, которые составляют угол отличный от 90 градусов прямоугольника не будет.
Верно!!! А такой прямоугольник обязательно ДОЛЖЕН быть ибо ГАРАНТИРОВАННО имеется прямоугольник для ЛЮБЫХ параллельных прямых. Иначе третья и первая прямые пересекаются.
Древние геометры называют это аксиомой о Существовании прямоугольника. Именно в такой формулировке оппонентам придется начать ОПРОВЕРГАТЬ, а они конечно же не смогут опровергнуть аксиому.
Спор все эти ДВЕ ТЫЩИ лет идет только об одном- кто из сторон делает Положительное Утверждение. Тот и должен доказывать.
И как только сделано доказательное логическое звено- то все, обязанность доказывания закончена, и наступает обязанность ОПРОВЕРГАТЬ.
Чего никто (и вы тоже) за 2000 лет никогда так и не сделали.
Помните мой вопрос о том "что будете делать когда вам доказательство покажут, будете опровергать аксиому?"- и вы сказали что не будете ))
В такой ситуации мне достаточно просто привести Один Доказательный логический довод, и всё.
Самое максимальное упрощение такого довода считаю завершенным- "Прямоугольник Существует т.е. его стороны могут быть бесконечного размера ибо имеется бесконечная плоскость".
Я бы вообще использовал термин "квадрат с возможностью бесконечного продления любой стороны" )) Тогда и сумма углов треугольника доказывается вообще без всяких "наложений и сравнений фигур", а тупо из очевидной симметрии и полного равенства всех сторон и углов ))
А вторая параллельная имеет отклонение от перпендикуляра на определенный угол.
это будет искривлением относительно Заведомо Возможного Бесконечного прямоугольника, и нарушит постулат о трех точках на одной прямой
В который раз признаюсь что я тупо заменил спорную аксиому на аксиому о том, что существует прямоугольник. Так впрочем уже делали многие древние геометры, пришлось таки почитать Вики ))
Прямоугольник может существовать в том числе с бесконечной стороной. Отрезки между прямыми всегда одинаковой длины, они также заведомо возможны из аксиомы конгруэнтности:
"Аксиома конгруэнтности (равенства) отрезков и углов. Если два отрезка (угла) конгруэнтны третьему, то они конгруэнтны между собой."
Пока вижу спор только по одному моменту- что такое прямой угол.
Еще раз-
1. Линия соединяющая точку на прямой с другой параллельной прямой кратчайшим образом
2. Угол равный половине от развернутого угла (образованного прямой линией).
Что такое прямой угол тут согласен только с пунктом 2.
90 градусов это прямой угол.
Пункт один доказывается из понятия "равенство" и "симметричность".
Если эти понятия вдруг отнесены к физике, к математике а в геометрии их якобы нету- то это обычная игра словами, не позволяющая формулировать геометрические утверждения, что абсурдно.
Берем точку, берем радиус, и делаем ДВИЖЕНИЕ, т.е. проводим окружность. Окружность это КРИВАЯ, значит несколько "равных минимальных" точек на прямой быть не может, она же не кривая а прямая. Значит есть только один отрезок с кратчайшим расстоянием между НЕпересекающимися прямыми, и он образует прямой угол.
В обратную сторону от третьей прямой к первой- ТАКОЕ же (ибо симметрия, равенство, конгруэнтность!) кратчайшее расстояние будет )) И значит должен быть такой же прямой угол. Значит ДОЛЖЕН быть опять прямоугольник а его нету- что невозможно ибо Прямоугольник заведомо Существует в бесконечности!
Собственно как видимо и вы- я читал про то что кто-то тама выступает против того чтобы вносить в геометрию понятие движение. Я считаю возможность "провести окружность" или "продолжить в бесконечность стороны отрезка прямоугольника" вполне геометрическим аргументом. Это понятие равно понятию СУЩЕСТВОВАНИЕ.
Если это нужно оформить "аксиомой", то так и надо сделать- вместо спорной аксиомы ввести в геометрию понятие "Существование в геометрической бесконечности всех свойств доказанных для ограниченного пространства", делов то.
Собственно все давно написано, просто мы с вами "своими словами" развлекались:
"К XVI веку относится доказательство учёного-иезуита Христофора Клавиуса. Доказательство его, как и у ибн Курры, основывалось на утверждении, что линия, равноотстоящая от прямой — тоже прямая.
Валлис в 1693 году в одной из своих работ воспроизводит перевод сочинения ат-Туси и предлагает равносильную, но более простую формулировку: существуют подобные, но не равные фигуры. Клод Клеро в своих «Началах геометрии» (1741), как и Герсонид, вместо V постулата взял его эквивалент «существует прямоугольник»."
Там есть даже спец термин "эквидистанта — геометрическое место точек плоскости, равноотстоящих от прямой", она якобы в общем случае является дугой, чего никто не доказывает. Зато есть аксиома о трех точках на одной прямой, и значит мои логические звенья о Существовании, Подобии, об Измерении Кратчайшего Расстояния- НЕ ТРЕБУЮТ других доказательств.
С введением понятий "кратчайшее расстояние" и "Существование прямоугольника в бесконечности" оба "не доказанных" древних варианта считаю доказанными. ОПРОВЕРЖЕНИЙ ведь нигде нет и быть не может ))
Если у вас хватит квалификации опровергнуть эти утверждения с учетом добавки о том, что заведомо имеется то самое "кратчайшее" расстояние между прямыми (иначе оно равно нулю т.е. пересеклось, т .е Заведомо Имеется Возможность Измерений в Бесконечности)- то пишите.
Всего-то надо слегка уточнить термин Пересечение- параллельные прямые всегда имеют ненулевое минимальное кратчайшее расстояние между собой, и возможность проводить измерение имеется в любой точке Бесконечной Плоскости.
Так вот, строгих опровержений всем этим давно известным средневековым доказательствам- я не вижу нигде. Есть только голословные заявы что якобы "логически не следует".
Тогда должен быть приведет опровергающий пример, о том что например Не существует кратчайших расстояний в геометрии, что не существует прямоугольника, что "равноотстоящая" линия Не будет прямой.
Вместо опровергающего примера тупо заявляется что-
М. Клайн обращает внимание на то, что пятый постулат Евклида имеет локальный характер, то есть описывает событие на ограниченном участке плоскости, в то время как, например, формулировка Прокла утверждает факт параллельности, который требует рассмотрения всей бесконечной прямой
Ну и ЧТО? Да, требует рассмотрения всей бесконечной прямой, и че? КТО доказал что якобы НЕвозможно рассмотрение всей бесконечной прямой, что якобы невозможен прямоугольник с бесконечными сторонами?!
Подобные бредни перекладывают обязанность доказывания с автора утверждения- на его оппонента.
Возможность продления любого рассуждения в бесконечность- является следствием из понятия ПЛОСКОСТЬ, и всякие споры о том что "а неизвестно чего будет в бесконечности" должны Доказываться.
Вам что-то там НЕИЗВЕСТНО? Утверждаете ПОЛОЖИТЕЛЬНОЕ утверждение о том что в бесконечности могут быть ИНЫЕ свойства линий и фигур? Тогда докажите это ))
Поэтому я каждый раз и говорю вам- покажите мою ошибку, а вы вместо этого говорите "не доказано" т.е. формулируете НЕОПРЕДЕЛЕННОСТЬ вместо Противоречия.
Докажите что есть "не доказанное", покажите ошибку в логическом звене, покажите Противоречие.
А игры геометров со словами Бесконечность и Неопределенность оставьте геометрам.
Я задал вам уточняющий вопрос, у меня вместо этих терминов есть свой термин- Никогда, он полностью определен.
В завершение цитата почти прямо связанная с моими Юридическими рассуждениями-
Две пересекающиеся прямые не могут быть обе параллельны одной и той же третьей прямой.
...
В 1883 Артур Кэли был президентом Британской Ассоциации и высказал такое мнение в своём обращении к Ассоциации:
С моей точки зрения двенадцатая аксиома Евклида в форме Плейфера не требует доказательства, но является частью нашего понятия пространства, физического пространства нашего опыты, которое является представлением, лежащим в основе нашего жизненного опыта.
Я точно также считаю что понятие "НЕ доказано" и понятие "НЕ ТРЕБУЕТ доказательства"- это разное.
И речь только о том- какая обязанность в споре возложена на ВАС.
Считаю что вы обязаны именно Опровергать, а не трындеть "не доказано, не доказано".
Чисто юридический спор товарищи геометры создали, ничего сложного. Так что опровергайте плз используемые мной понятия- Кратчайшее расстояние и Существование.
Опровергайте приведенные примеры. Опровергайте возможность продлить сторону прямоугольника в бесконечность!
Любая следующая попытка с вашей стороны ГОЛОСЛОВНО без опровержения заявить что "у меня что-то где-то не видать а значит якобы не доказано" или тем более сослаться на Ошибочную картинку т.е. сделать ПОЛОЖИТЕЛЬНОЕ но НЕ доказанное утверждение- является полным сливом.
ЗЫ- и поменьше верьте "общепринятым" сказочкам. Пинками дверь к главе АН РФ конечно открывать конечно я не смогу, но и вам влезать в спор без явных доказательств не надо было.
Спор все 2000 лет идет только о том, какая из сторон обязана доказывать утверждения о Поведении Линий и Фигур в Бесконечности.
Я считаю логическим звеном утверждение о том что свойства в бесконечности остаются теми же. Вы считаете что это НЕ ТАК- ну тогда доказывайте, ведь заявление о том что в бесконечности якобы Могут быть ИНЫЕ свойства- это положительное утверждение.
Вы заявляете о Существовании Нового Явления, предполагаете Новые Свойства- доказывайте это! Точно как с "богом", как только ввели Новое Понятие, сразу доказывайте что оно существует.
А при появлении понятия "Существует прямоугольник с бесконечными сторонами" ничего нового не вводится, идет именно логический вывод из ранее согласованных определений.
Так что опровергайте уже аксиому! очень ждем. ДЕСЯТЬ раз минимум вы этого уже не делаете.
(Victor665 @ 24-11-2018 - 01:30)
Значит если с верхней (начальной, по вашему рисунку) прямой образуется Первый прямоугольник со стороной в виде второй параллельной прямой, то точно также гипотетически якобы может от верхней начальной прямой образоваться и Второй прямоугольник со стороной в виде третьей параллельной прямой. Вот тут у Вас ошибка.
Второй не будет прямоугольником.
Верно- не будет. А возможность построения прямоугольника должна быть. А ее нету.
Если одна прямая не позволяет построить прямоугольник с другой прямой, то она не является параллельной первой.
ЧТД.
Совсем кратко- параллельные прямые гарантированно составляют прямоугольник с помощью двух отрезков в любом месте этих прямых. Вроде тут не было спора.
Прямоугольник они составляют только с той второй параллельной прямой, которая составляет угол 90 градусов со шпалой. Со всеми остальными параллельными, которые составляют угол отличный от 90 градусов прямоугольника не будет.
Верно!!! А такой прямоугольник обязательно ДОЛЖЕН быть ибо ГАРАНТИРОВАННО имеется прямоугольник для ЛЮБЫХ параллельных прямых. Иначе третья и первая прямые пересекаются.
Древние геометры называют это аксиомой о Существовании прямоугольника. Именно в такой формулировке оппонентам придется начать ОПРОВЕРГАТЬ, а они конечно же не смогут опровергнуть аксиому.
Спор все эти ДВЕ ТЫЩИ лет идет только об одном- кто из сторон делает Положительное Утверждение. Тот и должен доказывать.
И как только сделано доказательное логическое звено- то все, обязанность доказывания закончена, и наступает обязанность ОПРОВЕРГАТЬ.
Чего никто (и вы тоже) за 2000 лет никогда так и не сделали.
Помните мой вопрос о том "что будете делать когда вам доказательство покажут, будете опровергать аксиому?"- и вы сказали что не будете ))
В такой ситуации мне достаточно просто привести Один Доказательный логический довод, и всё.
Самое максимальное упрощение такого довода считаю завершенным- "Прямоугольник Существует т.е. его стороны могут быть бесконечного размера ибо имеется бесконечная плоскость".
Я бы вообще использовал термин "квадрат с возможностью бесконечного продления любой стороны" )) Тогда и сумма углов треугольника доказывается вообще без всяких "наложений и сравнений фигур", а тупо из очевидной симметрии и полного равенства всех сторон и углов ))
А вторая параллельная имеет отклонение от перпендикуляра на определенный угол.
это будет искривлением относительно Заведомо Возможного Бесконечного прямоугольника, и нарушит постулат о трех точках на одной прямой
В который раз признаюсь что я тупо заменил спорную аксиому на аксиому о том, что существует прямоугольник. Так впрочем уже делали многие древние геометры, пришлось таки почитать Вики ))
Прямоугольник может существовать в том числе с бесконечной стороной. Отрезки между прямыми всегда одинаковой длины, они также заведомо возможны из аксиомы конгруэнтности:
"Аксиома конгруэнтности (равенства) отрезков и углов. Если два отрезка (угла) конгруэнтны третьему, то они конгруэнтны между собой."
Пока вижу спор только по одному моменту- что такое прямой угол.
Еще раз-
1. Линия соединяющая точку на прямой с другой параллельной прямой кратчайшим образом
2. Угол равный половине от развернутого угла (образованного прямой линией).
Что такое прямой угол тут согласен только с пунктом 2.
90 градусов это прямой угол.
Пункт один доказывается из понятия "равенство" и "симметричность".
Если эти понятия вдруг отнесены к физике, к математике а в геометрии их якобы нету- то это обычная игра словами, не позволяющая формулировать геометрические утверждения, что абсурдно.
Берем точку, берем радиус, и делаем ДВИЖЕНИЕ, т.е. проводим окружность. Окружность это КРИВАЯ, значит несколько "равных минимальных" точек на прямой быть не может, она же не кривая а прямая. Значит есть только один отрезок с кратчайшим расстоянием между НЕпересекающимися прямыми, и он образует прямой угол.
В обратную сторону от третьей прямой к первой- ТАКОЕ же (ибо симметрия, равенство, конгруэнтность!) кратчайшее расстояние будет )) И значит должен быть такой же прямой угол. Значит ДОЛЖЕН быть опять прямоугольник а его нету- что невозможно ибо Прямоугольник заведомо Существует в бесконечности!
Собственно как видимо и вы- я читал про то что кто-то тама выступает против того чтобы вносить в геометрию понятие движение. Я считаю возможность "провести окружность" или "продолжить в бесконечность стороны отрезка прямоугольника" вполне геометрическим аргументом. Это понятие равно понятию СУЩЕСТВОВАНИЕ.
Если это нужно оформить "аксиомой", то так и надо сделать- вместо спорной аксиомы ввести в геометрию понятие "Существование в геометрической бесконечности всех свойств доказанных для ограниченного пространства", делов то.
Собственно все давно написано, просто мы с вами "своими словами" развлекались:
"К XVI веку относится доказательство учёного-иезуита Христофора Клавиуса. Доказательство его, как и у ибн Курры, основывалось на утверждении, что линия, равноотстоящая от прямой — тоже прямая.
Валлис в 1693 году в одной из своих работ воспроизводит перевод сочинения ат-Туси и предлагает равносильную, но более простую формулировку: существуют подобные, но не равные фигуры. Клод Клеро в своих «Началах геометрии» (1741), как и Герсонид, вместо V постулата взял его эквивалент «существует прямоугольник»."
Там есть даже спец термин "эквидистанта — геометрическое место точек плоскости, равноотстоящих от прямой", она якобы в общем случае является дугой, чего никто не доказывает. Зато есть аксиома о трех точках на одной прямой, и значит мои логические звенья о Существовании, Подобии, об Измерении Кратчайшего Расстояния- НЕ ТРЕБУЮТ других доказательств.
С введением понятий "кратчайшее расстояние" и "Существование прямоугольника в бесконечности" оба "не доказанных" древних варианта считаю доказанными. ОПРОВЕРЖЕНИЙ ведь нигде нет и быть не может ))
Если у вас хватит квалификации опровергнуть эти утверждения с учетом добавки о том, что заведомо имеется то самое "кратчайшее" расстояние между прямыми (иначе оно равно нулю т.е. пересеклось, т .е Заведомо Имеется Возможность Измерений в Бесконечности)- то пишите.
Всего-то надо слегка уточнить термин Пересечение- параллельные прямые всегда имеют ненулевое минимальное кратчайшее расстояние между собой, и возможность проводить измерение имеется в любой точке Бесконечной Плоскости.
Так вот, строгих опровержений всем этим давно известным средневековым доказательствам- я не вижу нигде. Есть только голословные заявы что якобы "логически не следует".
Тогда должен быть приведет опровергающий пример, о том что например Не существует кратчайших расстояний в геометрии, что не существует прямоугольника, что "равноотстоящая" линия Не будет прямой.
Вместо опровергающего примера тупо заявляется что-
М. Клайн обращает внимание на то, что пятый постулат Евклида имеет локальный характер, то есть описывает событие на ограниченном участке плоскости, в то время как, например, формулировка Прокла утверждает факт параллельности, который требует рассмотрения всей бесконечной прямой
Ну и ЧТО? Да, требует рассмотрения всей бесконечной прямой, и че? КТО доказал что якобы НЕвозможно рассмотрение всей бесконечной прямой, что якобы невозможен прямоугольник с бесконечными сторонами?!
Подобные бредни перекладывают обязанность доказывания с автора утверждения- на его оппонента.
Возможность продления любого рассуждения в бесконечность- является следствием из понятия ПЛОСКОСТЬ, и всякие споры о том что "а неизвестно чего будет в бесконечности" должны Доказываться.
Вам что-то там НЕИЗВЕСТНО? Утверждаете ПОЛОЖИТЕЛЬНОЕ утверждение о том что в бесконечности могут быть ИНЫЕ свойства линий и фигур? Тогда докажите это ))
Поэтому я каждый раз и говорю вам- покажите мою ошибку, а вы вместо этого говорите "не доказано" т.е. формулируете НЕОПРЕДЕЛЕННОСТЬ вместо Противоречия.
Докажите что есть "не доказанное", покажите ошибку в логическом звене, покажите Противоречие.
А игры геометров со словами Бесконечность и Неопределенность оставьте геометрам.
Я задал вам уточняющий вопрос, у меня вместо этих терминов есть свой термин- Никогда, он полностью определен.
В завершение цитата почти прямо связанная с моими Юридическими рассуждениями-
Две пересекающиеся прямые не могут быть обе параллельны одной и той же третьей прямой.
...
В 1883 Артур Кэли был президентом Британской Ассоциации и высказал такое мнение в своём обращении к Ассоциации:
С моей точки зрения двенадцатая аксиома Евклида в форме Плейфера не требует доказательства, но является частью нашего понятия пространства, физического пространства нашего опыты, которое является представлением, лежащим в основе нашего жизненного опыта.
Я точно также считаю что понятие "НЕ доказано" и понятие "НЕ ТРЕБУЕТ доказательства"- это разное.
И речь только о том- какая обязанность в споре возложена на ВАС.
Считаю что вы обязаны именно Опровергать, а не трындеть "не доказано, не доказано".
Чисто юридический спор товарищи геометры создали, ничего сложного. Так что опровергайте плз используемые мной понятия- Кратчайшее расстояние и Существование.
Опровергайте приведенные примеры. Опровергайте возможность продлить сторону прямоугольника в бесконечность!
Любая следующая попытка с вашей стороны ГОЛОСЛОВНО без опровержения заявить что "у меня что-то где-то не видать а значит якобы не доказано" или тем более сослаться на Ошибочную картинку т.е. сделать ПОЛОЖИТЕЛЬНОЕ но НЕ доказанное утверждение- является полным сливом.
ЗЫ- и поменьше верьте "общепринятым" сказочкам. Пинками дверь к главе АН РФ конечно открывать конечно я не смогу, но и вам влезать в спор без явных доказательств не надо было.
Спор все 2000 лет идет только о том, какая из сторон обязана доказывать утверждения о Поведении Линий и Фигур в Бесконечности.
Я считаю логическим звеном утверждение о том что свойства в бесконечности остаются теми же. Вы считаете что это НЕ ТАК- ну тогда доказывайте, ведь заявление о том что в бесконечности якобы Могут быть ИНЫЕ свойства- это положительное утверждение.
Вы заявляете о Существовании Нового Явления, предполагаете Новые Свойства- доказывайте это! Точно как с "богом", как только ввели Новое Понятие, сразу доказывайте что оно существует.
А при появлении понятия "Существует прямоугольник с бесконечными сторонами" ничего нового не вводится, идет именно логический вывод из ранее согласованных определений.
Так что опровергайте уже аксиому! очень ждем. ДЕСЯТЬ раз минимум вы этого уже не делаете.
Безумный Иван
Акула пера
11/24/2018, 3:22:04 PM
(Victor665 @ 24-11-2018 - 11:24)
То есть доказать аксиому Вы не смогли и сменили тактику.
Теперь Вы выдвинули новую аксиому. Прямоугольник существует.
Так с этим никто и не спорит. На моем рисунке фигура ABDC и есть прямоугольник. Но ведь помимо прямоугольников существуют и еще другие четырехугольники в геометрии.
С введением понятий "кратчайшее расстояние" и "Существование прямоугольника в бесконечности" оба "не доказанных" древних варианта считаю доказанными. ОПРОВЕРЖЕНИЙ ведь нигде нет и быть не может ))
Существует прямоугольник в бесконечности. Я даже доказательства требовать пока не буду. И этот прямоугольник можно построить на тех параллельных прямых, которые не имеют угла отклонения друг относительно друга. Достаточно взять две шпалы на бесконечном расстоянии. Но помимо бесконечного прямоугольника возможно существуют и другие бесконечные фигуры, например параллелепипед у которого две параллельные стороны имеют небольшой угол друг относительно друга.
Проблема не в том что прямоугольник существует. Проблема как раз доказать что прямоугольник и только прямоугольник может образовываться двумя параллельными линиями и двумя шпалами.
От этого зависит одну параллельную можно провести через данную точку или не одну.
Если одна прямая не позволяет построить прямоугольник с другой прямой, то она не является параллельной первой.
ЧТД.
А это кто доказал?
Для информации. Я не утверждаю тут что через точку плоскости можно провести много параллельных прямых параллельных данной прямой. Я тоже как и все принимаю на веру пятый постулат Евклида, потому что считаю его наиболее вероятным для реального мира. Так что доказывать обратное от меня не требуйте. Я всего лишь сомневающийся человек и утверждаю лишь то, что как доказать аксиому о параллельных, так и опровергнуть ее еще не удавалось никому.
То есть доказать аксиому Вы не смогли и сменили тактику.
Теперь Вы выдвинули новую аксиому. Прямоугольник существует.
Так с этим никто и не спорит. На моем рисунке фигура ABDC и есть прямоугольник. Но ведь помимо прямоугольников существуют и еще другие четырехугольники в геометрии.
С введением понятий "кратчайшее расстояние" и "Существование прямоугольника в бесконечности" оба "не доказанных" древних варианта считаю доказанными. ОПРОВЕРЖЕНИЙ ведь нигде нет и быть не может ))
Существует прямоугольник в бесконечности. Я даже доказательства требовать пока не буду. И этот прямоугольник можно построить на тех параллельных прямых, которые не имеют угла отклонения друг относительно друга. Достаточно взять две шпалы на бесконечном расстоянии. Но помимо бесконечного прямоугольника возможно существуют и другие бесконечные фигуры, например параллелепипед у которого две параллельные стороны имеют небольшой угол друг относительно друга.
Проблема не в том что прямоугольник существует. Проблема как раз доказать что прямоугольник и только прямоугольник может образовываться двумя параллельными линиями и двумя шпалами.
От этого зависит одну параллельную можно провести через данную точку или не одну.
Если одна прямая не позволяет построить прямоугольник с другой прямой, то она не является параллельной первой.
ЧТД.
А это кто доказал?
Для информации. Я не утверждаю тут что через точку плоскости можно провести много параллельных прямых параллельных данной прямой. Я тоже как и все принимаю на веру пятый постулат Евклида, потому что считаю его наиболее вероятным для реального мира. Так что доказывать обратное от меня не требуйте. Я всего лишь сомневающийся человек и утверждаю лишь то, что как доказать аксиому о параллельных, так и опровергнуть ее еще не удавалось никому.
Валя2
Акула пера
11/24/2018, 4:14:11 PM
(Безумный Иван @ 24-11-2018 - 13:22)
(Victor665 @ 24-11-2018 - 11:24)
То есть доказать аксиому Вы не смогли и сменили тактику.
Теперь Вы выдвинули новую аксиому. Прямоугольник существует.
Так с этим никто и не спорит. На моем рисунке фигура ABDC и есть прямоугольник. Но ведь помимо прямоугольников существуют и еще другие четырехугольники в геометрии.
у меня есть доказательство того что прямоугольник существует как Обязательная фигура для любых параллельных прямых.
Это заявление полностью равно спорной аксиоме, но основано на базовых доказательных логических доводах т.е. является теоремой.
Оно состоит из логических утверждений о том, что
1. возможно измерение в бесконечности, и значит можно определить и Измерить кратчайшее расстояние между параллельными прямыми в ЛЮБОЙ точке бесконечности.
2. Также утверждение основано на том, кто ненулевое расстояние между параллельными прямыми обязательно будет Существовать.
3. Также оно основано на том, что существует Половина развернутого угла, она же Четвертина полного угла обзора, она же называется Прямой угол.
Термин "Существование" я считаю вполне геометрическим, точнее это базовое понятие Логики и Научного метода, а геометрия это частный случай Научного метода познания мира.
Мое заявление о том что прямоугольник может иметь бесконечные стороны, также не является аксиомой, это процессуальное доказательство основанное на том, что не существует разницы между ограниченной частью бесконечной плоскости- а всей поверхностью бесконечной плоскости.
Не имеется обязанности доказывать "НЕ существование" чего-либо.
Наоборот, сторона заявившее Положительное утверждение о том что "в бесконечности свойства прямоугольника могут быть ИНЫЕ" и тем более заявы типа "непонятно как и чего там измерять ибо свойства измерений тоже могут быть Иные в бесконечности"- как раз и должна доказать свой гнилой базар.
Процессуальный спор является именно Доказательством. Это следует из процессуального понятия Системы аргументов которые должны иметь обоснование, иметь причинно- следственные связи, и не могут иметь противоречий.
В который раз предлагаю лично мою формулировку Базовой Процессуальной Аксиомы Научного метода познания мира- истинные представления о реальном мире- непротиворечивы.
Сразу предлагаю в стиле ученых древности, Первую Процессуальную теорему о порядке доказывания в научном методе познания мира- понятие "не существует" равнозначно понятию "не имеется известных науке доказательств о наличии взаимодействия данного явления с теми явлениями которые уже изучены, пусть даже только в ограниченной области".
Упрощенная форма (следствие) первой Процессуальной теоремы- "Даже в бесконечности не существует явлений, о которых не содержится научных доказательств в какой-либо ограниченной области"
Не знаю почему Базовую аксиому не учат в школе, я сам был вынужден сделать эту формулировку. Считайте что я как Перельман доказавший теорему Пуанкаре ))
Понятие "не существования" вполне доказуемое, оно не является аксиомой.
Поэтому заявление о том что "в геометрической бесконечности не существует ИНЫХ свойств линий и фигур, отличающихся от измеряемых и доказываемых в ограниченной области", это именно Доказательство а не Аксиома.
И вы обязаны это доказательство опровергать, чтобы сослаться на свою "картинку".
Мне же достаточно логически заявить что существует прямоугольник с бесконечными сторонами. Как и треугольник.
Я с самого начала вам это говорил- что достаточно доказать существование треугольника и параллелограмма, просто прямоугольник максимально просто и наглядно доказывается- через понятие Измерение кратчайшего расстояния и через понятие Половина развернутого угла.
Но помимо бесконечного прямоугольника возможно существуют и другие бесконечные фигуры, например параллелепипед у которого две параллельные стороны имеют небольшой угол друг относительно друга.
"параллелограмм с искажениями", так назовем. Верно, спор именно об этом.
Существование такой фигуры нарушает понятие Прямого угла как Кратчайшего расстояния между параллельными прямыми.
Сначала вы должны найти ОШИБКУ в моем утверждении о том, что прямой угол это и Половина развернутого угла, и линия идущая через отрезок с Кратчайшим расстоянием между параллельными прямыми.
Еще раз- я доказываю что заведомо существует Кратчайший отрезок, т.е. заявляю о возможности проводить Измерения в любой точке бесконечной плоскости. Это вполне геометрическое понятие.
Вы должны опровергать этот аргумент, т.е. должны сами Доказать что в бесконечности может возникнуть "новая неизвестная неопределенность с неизвестными свойствами".
Спор только в этом, "кто же доказывает заявы сделанные про бесконечность"
Проблема как раз доказать что прямоугольник и только прямоугольник может образовываться двумя параллельными линиями и двумя шпалами.
не так- проблема в том, чтобы опровергнуть понятие "гарантированно существующего прямого угла и гарантированного существующего кратчайшего расстояния между параллельными прямыми"
Эти понятия о Существовании в бесконечности и об Измерении в бесконечности- вовсе НЕ аксиомы. Это понятия доказываются из Базовых аксиом логики и Научного метода. Эти понятия равны термину "Доказательное утверждение".
От этого зависит одну параллельную можно провести через данную точку или не одну.
от этого зависит будет ли обязательно существовать прямоугольник или не будет
Если одна прямая не позволяет построить прямоугольник с другой прямой, то она не является параллельной первой.
ЧТД.
А это кто доказал?
это доказано мной. Вы нигде этого не опровергли. В инете вы не найдете опровержений. За две тыщи лет никто этого не опровергал, а тупо лживо трындели что нельзя делать выводы о продлении свойств прямоугольника в бесконечность.
А вот как раз наличие ИНЫХ свойств прямоугольника и надо доказывать!
Еще раз- заявление о Кратчайшем Расстоянии и Бесконечном Прямоугольнике является доказательством а не аксиомой.
Я всего лишь сомневающийся человек и утверждаю лишь то, что как доказать аксиому о параллельных, так и опровергнуть ее еще не удавалось никому.
я понимаю и давно предложил "нейтралитет", вы сами стали упираться НЕ вникнув в мои доводы, хотя сразу справедливо заподозрили что спор будет носить Юридический характер.
Конечно будет, все две тыщи лет этот спор по аксиоме носит именно Процессуальный характер.
Считаю что основной проблемой является некий неформальный запрет на доказательные споры по понятию Существование в бесконечности, ибо оно задевает проблему БОГА.
Поэтому как бы непринято в эту тему тыкать, а я наоборот уже больше десяти лет оттачиваю формулировки именно в этой области )) Мне не жалко доказать что "непознаваемый бог заведомо равен понятию Несуществующий бог", и аналогично доказать что "непознаваемые свойства третьей параллельной прямой в бесконечности, равны понятию Несуществование этой третьей прямой"
Чисто юридически процессуальный спор- если некое явление "непознаваемо, не определено для бесконечно удаленной непроверяемой области" то оно НЕ существует.
Геометрия тут частный случай, вопрос слишком общий. Но уверен что он все равно будет вынужденно считаться общепринятым доказательством.
(Victor665 @ 24-11-2018 - 11:24)
То есть доказать аксиому Вы не смогли и сменили тактику.
Теперь Вы выдвинули новую аксиому. Прямоугольник существует.
Так с этим никто и не спорит. На моем рисунке фигура ABDC и есть прямоугольник. Но ведь помимо прямоугольников существуют и еще другие четырехугольники в геометрии.
у меня есть доказательство того что прямоугольник существует как Обязательная фигура для любых параллельных прямых.
Это заявление полностью равно спорной аксиоме, но основано на базовых доказательных логических доводах т.е. является теоремой.
Оно состоит из логических утверждений о том, что
1. возможно измерение в бесконечности, и значит можно определить и Измерить кратчайшее расстояние между параллельными прямыми в ЛЮБОЙ точке бесконечности.
2. Также утверждение основано на том, кто ненулевое расстояние между параллельными прямыми обязательно будет Существовать.
3. Также оно основано на том, что существует Половина развернутого угла, она же Четвертина полного угла обзора, она же называется Прямой угол.
Термин "Существование" я считаю вполне геометрическим, точнее это базовое понятие Логики и Научного метода, а геометрия это частный случай Научного метода познания мира.
Мое заявление о том что прямоугольник может иметь бесконечные стороны, также не является аксиомой, это процессуальное доказательство основанное на том, что не существует разницы между ограниченной частью бесконечной плоскости- а всей поверхностью бесконечной плоскости.
Не имеется обязанности доказывать "НЕ существование" чего-либо.
Наоборот, сторона заявившее Положительное утверждение о том что "в бесконечности свойства прямоугольника могут быть ИНЫЕ" и тем более заявы типа "непонятно как и чего там измерять ибо свойства измерений тоже могут быть Иные в бесконечности"- как раз и должна доказать свой гнилой базар.
Процессуальный спор является именно Доказательством. Это следует из процессуального понятия Системы аргументов которые должны иметь обоснование, иметь причинно- следственные связи, и не могут иметь противоречий.
В который раз предлагаю лично мою формулировку Базовой Процессуальной Аксиомы Научного метода познания мира- истинные представления о реальном мире- непротиворечивы.
Сразу предлагаю в стиле ученых древности, Первую Процессуальную теорему о порядке доказывания в научном методе познания мира- понятие "не существует" равнозначно понятию "не имеется известных науке доказательств о наличии взаимодействия данного явления с теми явлениями которые уже изучены, пусть даже только в ограниченной области".
Упрощенная форма (следствие) первой Процессуальной теоремы- "Даже в бесконечности не существует явлений, о которых не содержится научных доказательств в какой-либо ограниченной области"
Не знаю почему Базовую аксиому не учат в школе, я сам был вынужден сделать эту формулировку. Считайте что я как Перельман доказавший теорему Пуанкаре ))
Понятие "не существования" вполне доказуемое, оно не является аксиомой.
Поэтому заявление о том что "в геометрической бесконечности не существует ИНЫХ свойств линий и фигур, отличающихся от измеряемых и доказываемых в ограниченной области", это именно Доказательство а не Аксиома.
И вы обязаны это доказательство опровергать, чтобы сослаться на свою "картинку".
Мне же достаточно логически заявить что существует прямоугольник с бесконечными сторонами. Как и треугольник.
Я с самого начала вам это говорил- что достаточно доказать существование треугольника и параллелограмма, просто прямоугольник максимально просто и наглядно доказывается- через понятие Измерение кратчайшего расстояния и через понятие Половина развернутого угла.
Но помимо бесконечного прямоугольника возможно существуют и другие бесконечные фигуры, например параллелепипед у которого две параллельные стороны имеют небольшой угол друг относительно друга.
"параллелограмм с искажениями", так назовем. Верно, спор именно об этом.
Существование такой фигуры нарушает понятие Прямого угла как Кратчайшего расстояния между параллельными прямыми.
Сначала вы должны найти ОШИБКУ в моем утверждении о том, что прямой угол это и Половина развернутого угла, и линия идущая через отрезок с Кратчайшим расстоянием между параллельными прямыми.
Еще раз- я доказываю что заведомо существует Кратчайший отрезок, т.е. заявляю о возможности проводить Измерения в любой точке бесконечной плоскости. Это вполне геометрическое понятие.
Вы должны опровергать этот аргумент, т.е. должны сами Доказать что в бесконечности может возникнуть "новая неизвестная неопределенность с неизвестными свойствами".
Спор только в этом, "кто же доказывает заявы сделанные про бесконечность"
Проблема как раз доказать что прямоугольник и только прямоугольник может образовываться двумя параллельными линиями и двумя шпалами.
не так- проблема в том, чтобы опровергнуть понятие "гарантированно существующего прямого угла и гарантированного существующего кратчайшего расстояния между параллельными прямыми"
Эти понятия о Существовании в бесконечности и об Измерении в бесконечности- вовсе НЕ аксиомы. Это понятия доказываются из Базовых аксиом логики и Научного метода. Эти понятия равны термину "Доказательное утверждение".
От этого зависит одну параллельную можно провести через данную точку или не одну.
от этого зависит будет ли обязательно существовать прямоугольник или не будет
Если одна прямая не позволяет построить прямоугольник с другой прямой, то она не является параллельной первой.
ЧТД.
А это кто доказал?
это доказано мной. Вы нигде этого не опровергли. В инете вы не найдете опровержений. За две тыщи лет никто этого не опровергал, а тупо лживо трындели что нельзя делать выводы о продлении свойств прямоугольника в бесконечность.
А вот как раз наличие ИНЫХ свойств прямоугольника и надо доказывать!
Еще раз- заявление о Кратчайшем Расстоянии и Бесконечном Прямоугольнике является доказательством а не аксиомой.
Я всего лишь сомневающийся человек и утверждаю лишь то, что как доказать аксиому о параллельных, так и опровергнуть ее еще не удавалось никому.
я понимаю и давно предложил "нейтралитет", вы сами стали упираться НЕ вникнув в мои доводы, хотя сразу справедливо заподозрили что спор будет носить Юридический характер.
Конечно будет, все две тыщи лет этот спор по аксиоме носит именно Процессуальный характер.
Считаю что основной проблемой является некий неформальный запрет на доказательные споры по понятию Существование в бесконечности, ибо оно задевает проблему БОГА.
Поэтому как бы непринято в эту тему тыкать, а я наоборот уже больше десяти лет оттачиваю формулировки именно в этой области )) Мне не жалко доказать что "непознаваемый бог заведомо равен понятию Несуществующий бог", и аналогично доказать что "непознаваемые свойства третьей параллельной прямой в бесконечности, равны понятию Несуществование этой третьей прямой"
Чисто юридически процессуальный спор- если некое явление "непознаваемо, не определено для бесконечно удаленной непроверяемой области" то оно НЕ существует.
Геометрия тут частный случай, вопрос слишком общий. Но уверен что он все равно будет вынужденно считаться общепринятым доказательством.